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Book Overview

WHO THIS BOOK IS FOR

This book is written with the practicing cell biologist and innovative biology educator

in mind. This book highlights, through discussion and example, computational and

informatics tools currently available for analyzing biological data and modeling cellular

processes. It is meant to serve as an introductory text for developing a better understanding

of how to use publicly available databases and create computational models. Although the

primary intended audience of this book is the researcher in cell biology, the text has been

written to be accessible to undergraduate students who have taken or are taking cell

biology courses. Undergraduate students were involved throughout the creation of the

book as research assistants. They came from multiple disciplines: biology, psychology,

physical anthropology, math, chemistry, and biomedical engineering. Their common

characteristic was their desire to have a research experience and learn something about

computational biology. These students, sophomores to seniors and an occasional graduate

student, created models, reviewed text, and refined concepts that are discussed in this text.

They have been collaborators in the creation of what I hope will be a useful resource to the

cell biology community.

USEFUL SKILLS AND TRAINING

As is the case in most research areas, the more training and exposure to the theory and

practice of a methodology, the better prepared one is to use that method appropriately.

However, biologists do not need to become computational biologists in order to make

use of computational tools. An analogous situation is determining whether to become a

molecular biologist in order to use molecular approaches in an area of research. Many

cell biologists take advantage of molecular tools (i.e., gene constructs, anti-sense RNA,

molecular probes) while investigating aspects of gene transcription or regulation in the

ix
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context of a larger cellular behavior. A cell biologist does not become a molecular

biologist solely by using molecular tools. The cell biologist and the molecular biologist

each have a different focus and area of in-depth expertise. It is not required for cell

biologists to become computational scientists in order to make use of computational

tools. However, it is important to become familiar with the strengths and weaknesses of

various computational approaches and to become familiar with the language of modelers

and computationalists. By becoming familiar with the language and methods, we are in a

better position to develop collaborations and take advantage of the skills of full-time

modelers or computational scientists.

We assume that the reader has a working understanding of algebra at the level com-

monly obtained with completion of high school and early years of undergraduate

education. The modeling chapters make the process of modeling obvious and assume

that the reader knows little to nothing about the mathematical modeling. The chapters

covering sequence alignment and family-domain databases lightly discuss the statistical

measures of significance that rely on concepts of frequency and distributions. References

are given for primary research and for reviews that provide more in-depth treatments of

the statistical underpinnings.

WHAT IS COVERED

This book brings together two topics that are not frequently introduced in the same text:

biological database searching (sequence similarity, protein families, and domains) and

dynamic models of cellular processes (cell cycle, calcium waves, glycolysis).

The layout of the chapters is designed to progress from information on nucleic acid

sequences to proteins and protein functional motifs to cellular behaviors of metabolic

pathways, cell division, and calcium dynamics. This progression is from static data and

information to simulated behaviors.

Molecular Sequence Database Chapters

The initial chapters are dedicated to the discussion of sequence alignments and the search-

ing of biological databases. These are primarily Web-based, publicly available resources

that are popularly used in background research or characterization of novel gene products.

The goal of these chapters is to provide the reader with an overview of the essential

features (queries, alignment methods, and statistical significance measures) needed to

understand and improve searches for sequence similarity, protein families, and putative

functional domains.

Modeling Chapters

Each chapter focuses on a basic research topic within cell biology (cell cycle, calcium

dynamics, and glycolysis). The goals for each chapter are to take you, the reader,

through the creation of a computational model of a presumably familiar biological

topic. Each chapter introduces a new simulation tool so that one can experience different

simulator interface designs. The tools used in the chapters are by far not the only tools that

can be used.

x BOOK OVERVIEW

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


The first half of each chapter discusses the biology and develops a noncomputational

model (biological concept map, system statements, and mathematical descriptions) that

is independent of the software tools. Thus, one can use the model description in other soft-

ware applications or in discussions with collaborators.

Each chapter is based on the research publications of experimentalists and modelers.

They are designed such that the papers can be read alongside of the chapter. These

are additional resources for in-depth investigation of the modeled biological process.

The chapters contain detailed introductions to creating the mathematical model based

on the knowledge of the biological system. The chapters are written to make evident

the process and skills involved in traversing biological and computational models.

TO GET THE MOST OUT OF THIS BOOK

The biological databases are great resources for biological data. They are easily accessed

via the Web and contain a wealth of biological data. Overall, the tools are easy to use,

requesting as little as a single piece of information to multiple pieces in order to

perform a database search. The chapters provide the background information for interpret-

ing search results. To best understand the nature of the data and information that can be

retrieved at any of the resources requires going to the sites and running a few searches.

The process of modeling is conceptually easy to understand. However, what appears

simplistic is quite challenging and significantly instructive. Modeling is learned by creat-

ing or re-creating models, getting stuck, and seeing whether you can work your way out or

convince yourself that the model is at a minimum accurately implementing the kinetic or

mechanistic relationships between components. To get the most out of the modeling chap-

ters, re-create the models while reading the chapter. The process of transforming

conceptual models to formalized relationships with consistent notations and subsequent

mathematical representations is an intellectual exercise that advances one’s understanding

of the biological system even before getting to a computer.

BOOK OVERVIEW xi
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Chapter 1
Introduction

1.1 A NEW TALE OR SAME STORY, DIFFERENT DAY?

In this day and age of informatic and ’omic efforts within biology, experimentalists are

challenged to exploit information systems and computational models within their research.

Computational tools that are already commonly used include image analysis software,

structural modeling programs, and sequence alignment tools. Mellman and Misteli

(2003) suggest that it is time for computation to become recognized as a tool on a par

with molecular tools in cell biology research. At the molecular level, one rarely questions

if Web-based sequence alignment and database tools should be used but rather asks if they

are being used efficiently and accurately to produce trustworthy results. At the cellular

level, informatics tools are helpful in identifying putative molecular components and func-

tions. However, the dynamic behaviors of cellular systems require the development of

computational models (mathematical models). Mathematical models are becoming

increasingly visible in the cell biology literature, and yet the methods of creating such

models are less obvious to many of us trained as experimental cell biologists.

A number of opinion pieces have been published in journals commonly read by cell

biologists—Nature, Science, Journal of Cell Biology, and Cell—that engage the question

of what cell biologists are to do with the now-existent parts lists generated from the

Human Genome Project and ongoing genomic and proteomic work (Bray, 1997; Hartwell

et al., 1999). Does having such an extensive catalogue of molecular data change our

understanding of the nature of biology? Hartwell argued that biology may be better

understood as modular. Others have described biology as an information science, relating

to the implementation of instructions encoded in DNA and RNA and operationalized by

protein, carbohydrate, and lipid machinery. These perspectives draw on lessons and

advantages gained from engineering principles and information sciences. Whether
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these perspectives are helpful frameworks for further understanding biology has yet to be

determined. A common theme within these perspectives is an increased focus on the

complex and formalized relationships between biological factors. These include evolution-

ary relationships that provide evidence for gene function and protein and network inter-

actions that describe molecular circuitry underlying cellular processes and formalized

kinetic relationships in the form of rate equations used to simulate dynamic behaviors.

Despite the recent fervor and attention to the benefits of computing in biology, the use of

computational approaches in biology has existed for years although not always in associ-

ationwith computers.Whatwe now commonly refer to as computationalmodels appear his-

torically asmathematical and theoretical models. As such, computational models in biology

can be found as early as 1952 when Turing hypothesized short-range action, long-range

inhibitor reaction diffusion as an explanation of pattern formation. This theory was later

applied to shells, cheetahs, and drosophila (Nagorcka and Mooney, 1992). Membrane

physiologists have used mathematical models to characterize membrane proteins such as

pumps and channels; and the use of mathematical models and computation has led to

better understanding of actin polymer dynamics, muscle contraction, and drosophila devel-

opment (Julian, 1969; Pollard, 1986; Wachsstock and Pollard, 1994). Although compu-

tations have been part of our work, these aspects of our research have not been explicitly

discussed as often by us as experimentalists. We are most familiar with mathematics in

terms of probability associated with graphs and tables to demonstrate that our experimental

results are not likely due to chance.

Recently, standard journals read by cell biologists—Science, Nature, Journal of Cell

Biology—are publishing more papers that include computational analysis. Reviews

discuss the importance of modeling and simulation in understanding the dynamics of

cellular systems and howwe approach biological research (Hartwell et al., 1999). Research

papers describe modeling results in an effort to better understand specific biological

systems. Vesicular transport, membrane ruffling, and cell adhesion are just a few examples

(Hirschberg et al., 1998; Waterman-Storer and Danuser, 2002; Lee et al., 2003). Within

these papers, there is either an implicit or explicit reference to the importance of modeling.

1.2 COMPUTATIONAL BIOLOGY

Computational biology is a broad discipline, as broad as the numerous fields of biology

and methods of computation. In its simplest description, computational biology is the

use of computers and mathematics to solve problems within biology. Computation

involves applying known and hypothesized relationships in mathematical form to the

description of phenomena. The use of computational methods in biological research has

been referred to in many ways, typically dependent on the biological focus and compu-

tational method of the speaker. Overall, the terms refer to the development and use of

mathematical descriptions of a working hypothesis.

Bioinformatics Algorithms and database designs focused on molecular data or infor-

mation management, sometimes including protein folding efforts.

Quantitative Biology Used in reference to various biological scales (e.g., molecular,

cellular, tissue, etc.) and refers primarily to measuring quantities of biological

factors. The quantitative data is then subjected to informatics efforts for cataloguing

and is available for numerical modeling.

2 INTRODUCTION
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Systems Biology Complex systems exist within and across multiple biological scales.

Systems biology has been defined as the determination of the components of these bio-

logical systems as well as the simulation of system behaviors with kinetic models in a

given scale (Henry, 2003).

Computational Cell Biology Mathematical models of cellular systems including

molecular motors, vesicle transport, cell signaling, and actin dynamics.

Bioinformatics is an aspect of computational biology that uses statistical approaches to

model biological relationships (e.g., evolutionary traits, structural and gene regulatory net-

works). Broadly, bioinformaticians work with and develop computational methods and

information management systems to discover biological principles. In practice, bioinfor-

matics has developed the tools by which researchers can aggregate background infor-

mation on already characterized genes and proteins as well as tools to predict genetic

and biochemical networks across species.

A key characteristic of the ‘omic efforts is the need for high-throughput methods of

generating data. The development of bioinformatics from genomics was largely due to

the ability to mass-produce nucleic acid data for DNA mapping, gene identification,

sequencing, and expression mapping. The great success of the genomics effort has led

to the search for methods of generating large reproducible, reliable, and biologically rel-

evant data sets for proteomics, metabolomics, cellomics, and physiomics. Researchers in

these areas focus on engineering high-throughput data methods and computational tools to

mine and analyze the data. ‘Omic research enables discovery science, where statistical

models are used to identify patterns of biological significance from the data.

Molecular sequence data and computational tools are used to develop arguments of

molecular identity, homology, and function that are based on evolutionary relationships

and the presence of domain motifs/signatures, and 3D structures. DNA sequences of

known genomes are used to search for and predict homologous or orthologous biological

functions in species where they have yet to be identified through experimentation. Appro-

priate annotations are sought for genes in the databases, and researchers attempt to infer

function based on sequence and expression data. This includes determining participation

in genetic or metabolic networks. Computational tools are employed to (1) draw compari-

sons between DNA sequences, gene structures, and determine possible evolutionary

relationships, (2) predict biochemical properties of proteins (i.e., protein folds, protein

binding sites, and posttranslational modifications), and (3) predict the functional role of

genes in cellular or physiological processes.

Molecular sequence databases are useful for determining what is known experimentally

or predicted computationally about the molecular components of biological systems and

their biological function. Sequence similarity searches are used to infer identity and

biochemical properties of a novel cDNA clone based on already characterized genes

and proteins. Protein family and domain databases use sequence and structure data to

construct family assignments or characteristic patterns for functional domains. Databases

of protein-protein interactions provide evidence for in vivo interactions and participation

in biochemical pathways. Protein interaction data, microarrays, and protein profiles are

subjected to cluster analyses to infer coregulated genes. Genomic comparisons are used

to identify conserved pathways between species.

The challenge that we face as experimentalists is how to isolate relevant information

from the large pool of data.

1.2 COMPUTATIONAL BIOLOGY 3
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Which data resource has the type of data one is looking for?

Is the data within the database trustworthy?

How does one know if one’s search results are statistically and, importantly, biologi-

cally significant?

In the following chapters on sequence alignment and protein family and domain

databases, we provide initial insights to answer these questions. More in-depth answers

and direction can be found in books and resources dedicated to informatics discussion

and training. The treatments in this book provide background information and directions

that can be useful to researchers as they engage with more commonly used Web-based

molecular research tools.

1.3 MODELING AND SIMULATION

As the use of information systems increases in biological research, allowing us both to cat-

alogue and search large amounts of data, biologists are faced with a new opportunity to

study complex relationships that were previously not feasible. We are challenged to

create models as a means of (1) making explicit the understood functional relationship

between biological entities (i.e., protein, nucleic acid, or organelle), (2) finding fault

with a hypothesis, and (3) providing colleagues an additional means of testing our results.

Experimental biologists typically use conceptual models to illustrate current hypoth-

eses or understandings of cellular systems. These explanations are usually provided in

the form of illustrations, information flow charts, and diagrams. These diagrams replace

the need for developing paragraphs of text to define the relationships among biological

factors within any system. However, it is impossible to use these diagrams to test the

hypothesis. In a computational model of dynamic systems, the relationships among

factors in a diagram are made explicit by defining the relationships in terms of rates, quan-

tities, or state changes. This transforms conceptual models into working hypotheses.

The phrase mathematical description can invoke images of a series of equations

consisting of unfamiliar symbols or incomprehensible numbers. It is helpful to state

here that generating a mathematical description is not necessarily about numbers or

exact quantities but rather about formalizing the relationships between biological

objects such that the relationship itself and the product of the relationship can be tested.

Developing models therefore is the mathematical assertion of a hypothesis about our

experimental system in a testable form. Transforming our hypothesis into explicit relation-

ships and assumptions is a rigorous reflective process that helps to expose missing com-

ponents and inconsistencies.

The topics discussed in this book might be considered the basis for computational cell

or systems biology. Molecular databases provide information on cellular components, and

mathematical models provide a means of studying dynamic properties of biochemical

reactions. The computational methods differ for informatics and dynamics modeling.

For instance, sequence alignment and search algorithms use statistical models to determine

the significance of an alignment. This is distinct from the hidden Markov models used to

calculate protein domain motifs, graphical models for network inference, differential

equations used to simulate dynamical systems, or Monte Carlo simulations of stochastic

processes.

4 INTRODUCTION
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1.3.1 From Databases to Dynamics: A View of Network and Pathways

The terms cell signaling, pathways, and networks are used to describe a series of protein

interactions that are the basis of dynamic, observable cellular behaviors. Intricate sets of

interactions have been created from the examination of interactions between subsets of

proteins. For example, we investigate growth factor stimulation of a signaling pathway

by examining changes in the state of one or more downstream molecules (e.g., cell

adhesion activation of PI3 kinase; Epidermal Growth Factor (EGF)-triggered phosphoryl-

ation of Mitogen Activated Protein Kinase (MAPK)). Changes in the phosphorylation state

or localization of a protein can serve as the biomarker for the activation of the pathway.

This biomarker is then used to identify additional players. The reduction and subsequent

reconstruction of the complex system of interactions is ideal for experimentation.

However, the properties of the system are not reflected in the discussion of the details

or parts of the system but rather only in the discussion of the system as a whole

(Nature 403: 345–346). The network is a view of the global aspects of the system. A dis-

tinction between pathways and networks then is the level of abstraction.

To infer of gene and biochemical networks, researchers use information science, stat-

istics, and graph theory to integrate data and elucidate complex biological relationships.

They take advantage of data from genomic and gene and protein sequence databases to

map newly identified sequences onto preexisting, already established networks or to

predict new interaction networks. Network and pathway databases like molecular

sequence databases catalogue information. They differ from the sequence database by

focusing on the interactions between genes and proteins. Kyoto Encyclopedia of Genes

and Genomes (KEGG) maps known metabolic pathways in yeast and computes similar

pathways in other species (Table 1.1; Goto et al., 1997; Ogata et al., 1999; Kanehisa

et al., 2006). EcoCyc contains Escherichia coli metabolic and some signaling pathways

and is the metabolism template for predicting metabolic pathways in other species

(Karp et al., 1999). Biomolecular Interactions Network Database (BIND), now encom-

passed by BondPlus and IntAct developed by the European Bioinformatics Institute, cat-

alogues protein-protein interactions (Hermjakob et al., 2004; Unleashed Informatics, Ltd.,

2006). Collectively, these databases gather and organize data on networks and pathways,

as well as provide computational tools that primarily use binary relationships to predict

metabolic pathways in species where they have yet to be confirmed experimentally.

When examining networks and pathways, there are a series of questions that can be

posed with which computational and bioinformatics tools can help. These include:

What genes or proteins are involved? What are their functions? What other pathways or

networks are they involved in? Is the associated cellular behavior dependent on the

concentration or location of the factor?

TABLE 1.1 Gene and Protein Interaction—Network Databases

Database Type of Data Primary Species Data Sources

BIND Protein interactions Yeast

KEGG Gene and metabolic

networks

Yeast WIT, LIGAND, Enzyme

handbook, Japanese catalogue

EcoCyc Metabolic pathways E. coli, coding

DNA only

Genbank, Enzyme, primary

literature

CSNDB Cell signaling Human Transfac, journal literature

1.3 MODELING AND SIMULATION 5
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These questions can be addressed by different bioinformatics and computational

resources (Table 1.2). The database tools and graphical maps are helpful toward under-

standing the protein components and interaction flows in a pathway, and mathematical

modeling tools enable us to examine and better understand the behavior of the pathways

and networks.

Mathematical models take many forms. The models discussed in this book are systems

of differential equations also known as continuous or population models. These equations

are solved numerically by providing numerical values for concentrations, rates of reac-

tions, diffusion rates, and binding constants. Quantitative data for some of these values

exists in literature and databases, however many are missing for a large fraction of

known proteins and enzymes. National Institutes of Health—funded efforts of the Alliance

for Cellular Signaling (AFCS) and the National Technology Centers for Networks and

Pathways have focused on the development and use of methods to obtain this quantitative

data. The premise is that by obtaining quantitative data within biological systems, it will be

possible to model the dynamics of cellular networks and pathways and thus predict the

behavior of a system.
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Chapter 2
Sequence Alignments and

Database Searches

2.1 PURPOSE OF THIS CHAPTER

The goal of this chapter is to provide novice users of publicly available sequence databases

with sufficient understanding to perform and interpret sequence similarity searches in

biological databases. By performing sequence similarity searches against biological

databases, newly identified gene sequences can be used to find putative biological relation-

ships. In order to achieve this goal, we must have an understanding of the types of infor-

mation contained within sequence databases and their records, how sequence alignments

are obtained, and how to interpret the results of such searches.

For the purposes of this chapter, we highlight the molecular data types in biological

sequence databases, search alignment methods and parameter settings, and the interpre-

tation of statistical values associated with the results. These factors directly affect the

researcher’s ability to retrieve and evaluate data on sequence similarities and homologies.

The examples in the chapter are based on searches using the databases provided by the

National Computational Biology Institute (NCBI). Tutorials with step-by-step instructions

on the use of NCBI search tools are available from NCBI.

2.2 BIOLOGICAL INTRODUCTION: INFERRING HOMOLOGY

Our basic understanding of cellular proteins is that structure determines function. The

ability of a protein to serve as cofactor, enzyme, catalyst, or storage molecule is a property

of its structure. The structure when it comes to proteins is determined by sequence,

folding, and posttranslational processing. The protein sequence is determined by genes

and genomic sequences. It is commonly understood that sequences and structures that

9
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resemble one another serve similar functions. Sequences resemble one another by having

similar sequences. Stretches of nucleotides or amino acids have the same or similar resi-

dues in the same order. From these similarities or lack thereof, biologists infer biological

relationships. In terms of evolution, we categorize genes as homologous, paralogous, or

orthologues. In terms of cellular function, we use similarities and common characteristics

to infer putative cellular roles and activities.

Detail 2.1
Twenty-five percent identity over a stretch of 100 amino acids can be considered good

evidence of common ancestry between two sequences.

Sequence information about genes and proteins is also used to construct molecular

tools. We want to know the sequence of a specific protein or gene in order to design

primers or probes for experiments such as Reverse Transcription-Polymerase Chain

Reaction (RT-PCR), RNA inhibition (RNAi), in vivo hybridization, Green Fluorescent

Protein (GFP) constructs, and so forth. Regardless of the intention, ideology, or end

use of the data, researchers are finding biological sequence data and the ability to

search annotated sequence databases useful to address common questions about relation-

ships, properties, and identity (Table 2.1).

Search strategies for identifying related DNA and amino acid sequences are built on

evolutionary principles and in the most simplistic description engage in a series of

sequence alignments to map degrees of identity between sequences from which one

infers the degree of homology.

1. Sequence alignment is primary method of comparing sequences.

2. Molecular evolution looks at the conservation of nucleotides or amino acids within

sequence or subregions.

3. Homology is an inference based on degrees of similarity.

2.3 SEARCHING FOR SIMILAR SEQUENCES

The goal in creating a search strategy is to optimize the retrieval of sequences related to the

sequence of interest. To create successful, efficient searches, it is helpful for us to under-

stand how search methods retrieve records. Searching biological databases for related

sequences requires selecting a query sequence(s), a method for searching, and database(s)

to be searched (Fig. 2.1). By varying choices for each component of the search, multiple

TABLE 2.1 Common Molecular Questions Addressed at Sequence Databases

Common Questions Approaches

Is my sequence unique? Sequence comparisons

What biochemical properties could it

have?

Sequence comparisons, predicted

biochemical characteristics

What other proteins or genes is mine

related to?

Sequence comparisons, predicted motif

and domain characteristics
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unique searches can be constructed, and the construction of the search (initial sequence,

method, and database) determines the statistical and biological significance of the

search results. In the next pages, we discuss characteristics of query sequences, obtaining

a sequence from NCBI database records, and use of the sequence in sequence alignment

searches against databases.

2.3.1 Query Sequences

2.3.1.1 Types of Query Sequences A query sequence is the nucleotide or amino

acid sequence used to search a database and create pairwise sequence alignments.

The statistical and biological significance of the sequence alignment and search results

is determined by all three factors of the search: query, algorithm, and database. The

type of query sequence and purpose of our search direct our subsequent choices of align-

ment and search algorithm as well as database. The broadest classification of a query

sequence is based on its molecular nature as nucleic or amino acid. These are inherently

different starting points from a biological and statistical perspective. There are many bio-

logical processes between chromosomal DNA to active proteins (e.g., chromatin folding,

transcription start frames, exon excision, mRNA translation, etc.). Genomic or even

mRNA sequences do not definitively determine the protein sequence of a cellularly

active protein. Using protein sequences over nucleic acids when looking for related

proteins removes ambiguities that can arise from alternate processing including transla-

tional wobble or alternate codon usage.

Looking at DNA and protein from a statistical perspective, we can begin with their

molecular alphabets. Nucleic acid sequences are composed of four bases—A, T, G,

C—whereas proteins are composed of 20 amino acids. The chance of finding similarities

between evolutionarily unrelated sequences is greater in nucleic sequences than in amino

acid sequences, just as it would be more likely to identify similarities between random

words in a 10-letter alphabet than it is in a 26-letter alphabet (Fig. 2.2). Thus, it is more

likely to find stretches of identical sequences within a pairwise DNA-DNA comparison

than a protein-protein comparison by chance. The increased likelihood of finding aligned

sequences by chance decrease the statistical significance of the alignment. Direct comparison

of the ability of DNA versus protein sequence searches to detect sequence similarity have

shown that DNA searches return fewer significant matches (Pearson, 1995, 1996, 2000).

Finding quality alignments is highly dependent on the method of scoring residue pairs

between two sequences. We know empirically and from evolutionary principles that sub-

stitutions occur within sequences that result in related but not identical gene and protein

sequences. Bioinformaticians have developed scoring mechanisms—substitution scoring

matrices that we discuss in more detail in a later section—that exploit the variety of sub-

stitutions possible in nucleic and amino acids. Because of the substitution matrices, more

Figure 2.1 Concept map of key elements used in database search for sequence similarity.
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sensitive sequence alignments can be made with protein than with nucleic acid queries. If a

researcher only has RNA or DNA sequence data, translational tools can be used to predict

putative protein sequences for genomic, gene, and mRNA sequences (States and Botstein,

1991). This allows one to make use of the substitution scoring schemes while searching for

related sequences.

Highlight 2.1

When possible, use amino acid sequence instead of nucleic acid sequences to search

sequence databases for related sequences.

Other characteristics of the query sequence that are important to take into consideration

include its length and complexity. The length of a query sequence affects the ability of the

Figure 2.2 An early model of the probability of alignment of two random sequences. Mirror represen-

tation of the probabilities for obtaining identical pairs by chance for nucleic acids (left) and amino acids

(right) are shown. (a) The likelihood of selecting a specific identical pair. (b) The probability of having any

matching pair is 1/4 (0.25) for nucleotides and 1/20 (0.05) for amino acids. (c) It follows that the prob-

ability of a random stretch of 5 matching pairs is the probability of any identical pair raised to the power of

the number of residue pairs. In this example, we can see that the likelihood of obtaining matching pairs in

a random nucleotide sequence is three fold greater than in an amino acid sequence of the same length.
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search algorithm to identify statistically significant matches within a given database. Short

sequences (,20 to 28 nucleic acids; ,15 amino acids) are more likely to align by chance

within a larger sequence or across many sequences in a database.

Detail 2.2
Fifty percent identity in a 20- to 40-amino-acid region frequently occurs by chance.

Yet, shorter sequences may represent conserved functional motifs such as phosphorylation

sites, calcium binding domains, nuclear localization signals, and so forth. To obtain stat-

istically significant matches for these biologically relevant motifs, additional alignment

methods and specialized secondary databases have been developed. These include

protein family and domain databases, which we discuss in the next chapter.

2.3.1.2 Keyword Searches for Individual Sequence Records For pairwise

alignments, aligning two sequences, we start with a query sequence. If we have recently

isolated a sequence, it becomes the material for searching the databases. We may other-

wise need to retrieve the molecular sequence of our protein or gene from a database.

Ideally, to retrieve a sequence from the public databases, one uses the unique identifier

for the sequence. Unique identifiers function similar to Social Security numbers in that

they are unique values that correspond with specific individuals. In the case of sequence

databases, the unique identifiers are typically strings of letters and numbers, and the indi-

viduals are sequences and sequence records. A separate unique identifier is given to a data-

base record and the sequence within the record. This makes it possible to update database

records without changing the identifier for the sequence itself. Each record has fields for

the record and sequence ID in addition to data fields containing the sequence, publications,

sources, and sequence characteristics (coding regions, putative domains). Sequence IDs

can be found in articles when submission of the sequence is required for publication in

a journal.

In the absence of having the sequence identifier, a common starting point in all

Web-based searches is the use of the keyword search. Keyword searches are based on

matching query word(s) to one or more words in the data fields of a record. Records

contain multiple text fields that may contain the search term. This increases the likelihood

of obtaining a search result (match) but also increases the probability of returning records

of little or no interest. For example, an unrestricted key word search for “IP3 receptor” will

retrieve records with the term(s) in a publication title yet no sequence data for the IP3

receptor.

Keywords are rarely unique to one’s protein or gene of interest. The keywords “IP3

receptor” can be parsed by the search engine into IP3 OR receptor, IP3 AND receptor,

or IP3 receptor. If the database contains many receptor sequences, but none for the IP3

receptor, the first two sets of search queries could return results, whereas the third

would not. As well, some text search algorithms and databases employ synonyms that

will find “InsP3” as a match to IP3. Without the synonym matching, the term IP3

would miss records with InsP3.

The number of records retrieved in a keyword search can be quite large. These searches

are likely to find unrelated records due to matches in publication fields where the search

term is present in the abstract, title, or document text; or matches from the database using

a synonym in the search instead of the original term (i.e., “IP3” may be converted to “IP”).
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Highlight 2.2

As shown in Table 2.2.1, NCBI uses the term accession number to refer to a record

identifier. In contrast, the term accession number is used in Protein Information

Resource (PIR) and SwissProt to refer to the sequence identifiers. Regardless

whether referring to record or sequence, accession numbers are the most direct

means of retrieving information about a particular sequence in a database. Each data-

base has its own naming convention for assigning IDs (Table 2.2.2). Nucleotide acces-

sion numbers from the primary databases begin with a single letter followed by five

numbers or two letters followed by six numbers. An accession number for a protein

sequence translated from the primary nucleotide databases begins with three letters fol-

lowed by five digits.

HIGHLIGHT TABLE 2.2.1 Frequently Used Names for Unique Identifiers

Molecule: MAP Kinase Kinase2, rat

Database Nomenclature Identifier What’s identified

NCBI Accession number AAA41620.1 Protein record

NCBI Gene identifier (gi) GI:349545 Gene sequence

NCBI Accession number L14936 Gene record: mRNA

NCBI Gene identifier (gi) gi:349544 Gene sequence

PIR Entry number A48081 Protein record: sequence and annotations

PIR Accession number A48081 Protein sequence(s)

S38376

S38301

S32412

HIGHLIGHT TABLE 2.2.2 Accession Number Naming Conventions for Records

Accession Number Record Type (Not Sequence) Databases

U12345 Nucleotide GenBank/EMBL/DDBJ

AY11123456 Nucleotide GenBank/EMBL/DDBJ
NM_123456 Nucleotide: mRNA RefSeq

NC_123456; NT_123456 Nucleotide: complete genome or

chromosome

RefSeq

NG_12345 Genomic region RefSeq

AAA12345 Translated protein sequence from

nucleotide

GenPept

O#####; P#LLL#; Q##L##;

P###L#

Protein sequence; 1 [O,P,Q]; 2 [0–9];

3 [A–Z,0–9]; 4 [A–Z,0–9];

5 [A–Z,0–9]; 6 [0–9]

SwissProt

123456L; 1234567L Protein Sequence PRF

NP_123456 Protein Sequence RefSeq

Narrowing the search terms and search space to obtain fewer returned records is

one means of increasing the likelihood of identifying a record of interest. For example in

NCBI, keyword searches can be limited to records for a single species (drosophila, yeast,

mouse, arabidopsis), molecular type (cDNA, EST, genomic, protein), or specific record
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fields (Fig. 2.3). NCBI currently lets you restrict searches to one of 23 record fields, 3 gene

locations (DNA/RNA, chloroplast, or mitochondria), or one of 8 specific databases.

Keyword search results are returned at NCBI as record summaries. This typically includes

the accession number, a gene identifier, and definition or title of the sequence (Fig. 2.4). The

definition line commonly mentions the organism that the sequence is from, the name of the

gene product if known, and type of sequence (mRNA, chromosomal). Together the accession

number and definition line may provide sufficient information for one to determine if the

record contains the desired sequence. However, because annotation errors for putative

gene and protein sequence exist, it is important to use more than the title as criteria for

success. To determine if the record contains the sequence of interest, use the sequence in a

default BLAST (basic local alignment search tool) alignment search. An appropriate

sequence will return significant alignments to other related sequences.

2.3.2 Sequence Alignment and Database Searching Methods

In contrast with the keyword search, sequence alignment searches only look in sequence

data fields for records of interest. Stated simplistically, search methods engage in a series

of sequence alignments to determine degrees of similarity between sequences and then

return a list of matched sequences to the user. Multiple methods for sequence alignment

have been developed, and more are likely to be created. The key steps to performing auto-

mated sequence alignment are align sequences; score the alignment; and, when searching a

database, rank and return significant alignment results. The alignment methods that we

describe next are based on dynamic programming, and their results are evaluated statisti-

cally based on the distribution of related and unrelated (random) sequences. Unless other-

wise stated, the principles discussed below apply equally to nucleic and amino acid

sequences.

Figure 2.3 Limits can be applied to a NCBI keyword search through drop-down menus, seen on the left

and right sides, provided on the “Limits” page.
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2.3.2.1 Alignment Algorithms Determining sequence similarity through sequence

alignments is a familiar concept and practice to biologists. Manually, we examine two or

more sequences for similar residue patterns, match up identical residues, decide qualitati-

vely whether they are aligned well, and determine statistically how identical or similar the

sequences are. The automation of this process requires a computer-based method to line

sequences up against one another and a scoring method for evaluating the success of

this alignment in terms of similarity or identity. Two methods for accomplishing this auto-

mated sequence alignment process are global or local alignment algorithms. Both make

use of dynamic programming.

Global Alignments The global alignment method created by Needelman and Wunsch

(1970) aligns the entirety of two sequences, comparing the query sequence (A) to the

target sequence (B). The goal is to obtain the greatest number of matched residues over

the full length of the sequence including the sequence ends. Dynamic programming involves

creating a matrix with a sequence on each axis. Every possible alignment between the

sequences is explored by calculating an alignment score at each vertices in the matrix.

Assigning values to residue pairs to generate an alignment score is fundamental to

sequence alignment and sequence search algorithms. To determine the best alignment,

the computer needs a method for scoring alignment. Each nucleotide location on the

matrix is examined for its identical match (A-A versus A-T; L-L versus L-G). Each

match or mismatch is given a score. A linear path through the matrix that gives the greatest

number of matches and subsequently the highest score is the optimal alignment (Fig. 2.5).

Figure 2.4 An example of a full NCBI record: field names are listed on the left and field contents to the

right. NCBI record summaries list a subset of fields, highlighted and boxed in the record example shown.

Circled in the record are the organism, gene and sequence type listed in the DEFINITION field.
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Alignments are given a score based on the quality of the alignment along a path through

the matrix.

The extreme version of the initial scoring scheme for amino acids used by Needleman

and Wunsch (1970) assigned a positive score of þ1 to identical residues and ignored

(scored as 0) any mismatches. The total score for the alignment was then determined by

summing the scores across aligned positions. The greatest score for a nucleotide sequence

of 10 bases is 10 for an identical alignment, and the lowest score is 0 for complete lack

of matches. As the sequence length grows, so does the potential score of the alignment.

Such a stringent scoring scheme can be useful for finding nearly identical sequences.

However, it ignores, by setting to zero, the biologically common existence of mismatches

between residues and the presence of insertions and deletions. The extreme scoring

scheme, therefore, misses more distantly related gene products.

Local Alignments Local alignment methods changed the focus of the alignment from

finding the best score for a full-length alignment to finding the best alignment score for

the longest stretch of residues. Local algorithms determine if there is a fraction of the

Figure 2.5 (a) The scoring scheme for comparing two sequences specifies values for gaps, matches,

and mismatches between residues. (b) The equation for determining the alignment score (aS) is the

maximum score of three relationships: the alignment score of the upper left cell on the diagonal plus

the position score, the alignment score of the left cell plus the gap score, or the alignment score from

the above cell plus the gap score. (c) To illustrate how the scoring matrix is populated, a simple

matrix example is provided with nucleotide residues A, T, C, and G. Each matrix cell is shown with

the paired residues (e.g. AA), the position score for the pair (¼5) and the alignment score (bottom

left). Matrix origin is top left. The position score (pS) is the score for the residue pair (e.g. AA, AT) at

any given matrix position. The alignment score of the initial pair participates in the determination of align-

ment scores for neighboring cells as indicated by the arrows. The alignment score for the residue pair TT

(shaded box) is 10 while the position score is 5.

2.3 SEARCHING FOR SIMILAR SEQUENCES 17

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


query sequence that can be optimally aligned between query and target sequence (Smith and

Waterman, 1981; Wilbur and Lipman, 1983; Altschul et al., 1997). They are not required as

with the Needleman and Wunsch approach to align from sequence end to sequence end.

The main changes to the alignment scoring scheme to create a local alignment method

in dynamic programming were to (1) require a negative score for mismatches, (2) set any

negative alignment score to zero, and (3) terminate any alignment whose score is zero and

start over (Fig. 2.6). The alignment is started in the highest scoring matrix and continues

until the alignment is terminated. Fine tuning a local alignment algorithm is done by chan-

ging the values assigned to matches and mismatches. The optimal alignment is the longest

stretch of aligned residues with the highest alignment score.

Highlight 2.3

Global alignments are useful for determining the identity of a gene or sequence. Two

sequences are typically considered to have the same identity when.90% of the residue

pairs in the alignment are identical.

Figure 2.6 (a) Scoring schemes for global (left) and local (right) alignment methods are shown. (b) The

difference between scoring methods can be seen in the scoring equations that determine alignment

scores in the matrix. The arrows in the populated matrices indicate the path for the optimal alignment

traced backwards. (c) The scores from the upper left, above and left cells are written from top left to

right and down in each cell. Local alignments begin in the cell with the highest score and substitute a

zero for any negative score. Global alignment begin in the lowest right hand cell and negative scores

are retained. In this example, the lowest right hand cell is also the highest scoring cell. This is not

always the case. Note that there are two equally well-scoring alignments in both matrices.
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2.3.2.2 Gaps The above discussion of global and local alignment methods does not

accurately take into account scoring insertions and deletions between sequences that

appear as gaps in sequence alignments. Gaps are accounted for by adding a residue

location, 0, in the axes of the matrix and by the scoring penalty. The added gap column

and row establishes gap penalties for the end of the two sequences, increasing the

penalty when the sequences begin to align further away from the ends. The gap score

establishes the degree of penalty, a negative score, for having to adjust the alignment

by moving down or across the matrix for the highest scoring pair. Thus, the benefit of

inserting a gap must be greater than the penalty to the score (Needleman and Wunsch,

1970). When fine tuning global and local alignment methods, it is the relationship

between match, mismatch, and gap penalties that primarily determine whether a

full-length or partial alignment is retrieved (Vingron and Waterman, 1994).

Detail 2.3
A review of the effect of varying gap, match, and mismatch values on the alignment of

random sequences found that use of high mismatch and gap penalties greater than a

match score will find local alignments; when the penalty for a mismatch is greater

than twice the score for a match, the gap penalty becomes the decisive parameter in

the alignment; and for a mismatch penalty less than twice the score of a gap and a

wide range of gap penalties (Vingron and Waterman, 1994).

In general, global alignment methods are useful when comparing two sequences to find

a measure of similarity or identity over the length of the sequences. Local alignment

methods are useful for comparing sequences that have regions of similarity that are

only a fraction of the sequence lengths, where one sequence may be a subset of the

other or where regions of similarity overlap. Thus, local alignments are better for

finding regions of similarity that may arise from conserved domains. These short

regions may be missed by global alignments which are tuned to find the best score for

the overall length even at the expense of an otherwise high scoring subregion (Mount,

2001; Smith and Waterman 1981; Smith et al., 1981).

2.3.2.3 Searching Sequence Databases

Global Alignments When the sequences are placed within a database, additional issues

arise for aligning and scoring sequences: How do we compare alignment results without

severely slowing down the search time? The global alignment method is relatively compu-

ter intensive. Each pairwise alignment creates a matrix of size n � m, where n is the length

of the shorter sequence and m the longer. This formulation originally minimally required

the equivalent number of steps (n � m) for the alignment to be computed as well as for the

movement of results in and out of memory. This results in a total of (n � m)2 to be calcu-

lated. Although global alignment methods have been improved, they are not typically used

to search databases over the Web. Instead, when global alignment algorithms are used

remotely, it is likely to compare two sequences provided by the user (Bray et al., 2003;

Cochrane et al., 2005). Global alignment tools may be installed and run on local machines

when alignments of a large number of sequences are desired.
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Local Alignments Local alignment methods are typically faster than global alignments

and often implemented to search remote databases (Table 2.2). A key factor in generating

fast search algorithms is to know when to initiate and terminate an alignment with a

sequence in the target database. In 1983, Wilbur and Lipman developed the word-based

method that is used in many of the popular database search tools. The method is built

on the premise that any two sequences with a significant relationship will have at least

one word—series of residues—in common. Based on this premise, a word index is gener-

ated for sequences within the database. The query sequence is also broken into words that

are used to search the index. When matches—now referred to as hits—are made, a

sequence alignment with the full target sequence is initiated.

BLAST (basic local alignment search tool) is probably the most well-known local

alignment search algorithm. In BLAST, the word index matches identical and neighboring

words to the query string. For the word match to be considered a hit, its aligned score must

be above a cutoff threshold or be discarded (Altschul et al., 1990, 1997). Once a hit is

obtained, the sequence alignment is extended in both directions (Fig. 2.7). More of the

query sequence is added to the ends of the sequence fragment until its score can no

longer be improved by extension as long as the score stays above the dropoff value X.

Because the local alignment method seeks to determine the maximum alignment in a

region of the sequence, multiple regions with high identity or similarity may be found

interspersed between regions of low-scoring alignments. As hits are made, the BLAST

algorithm determines if the hit is significant in relation to the other hits obtained. The

newest alignment score is compared with the maximal score obtained for a previous

sequence alignment. The alignment is kept or discarded based on how close it is to the

current maximal alignment score. The alignment score in local alignment without gaps

TABLE 2.2 Local Sequence Alignment Algorithms

Program Web Site References

FASTA http://www.ebi.ac.uk/fasta33/;
ftp.virginia.edu

Pearson and Miller (1992);

Pearson (1996)

BLAST http://www.ncbi.nlm.nih.gov/
blast/

Altschul et al. (1990)

LALIGN http://fasta.bioch.virginia.edu/
fasta_www2/
fasta_www.cgi?rm ¼ lalign

Huang and Miller (1991)

Psi-Blast http://www.ncbi.nlm.nih.gov/
blast/

Altschul et al. (1997)

Mega-Blast http://www.ncbi.nlm.nih.gov/

blast/

Zhang et al. (2000)

Figure 2.7 Schematic illustration of extended sequences. When a hit is made between a query

sequence word and the database word index (left), the query sequence length is extended. The original

BLAST algorithm looked for single hits between the query word and target to begin alignment extensions

(left). The improved gapped BLAST algorithm only extends sequences with two hits (right). This modi-

fication allowed for the implementation of gapped alignment searches with retention of search speed

(Altschul et al., 1997).
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is of the aligned segment, not the entire sequence. When multiple alignments are found

within a single pairwise sequence alignment, the individual scores contribute to an

overall sequence alignment score (Wilbur and Lipman, 1983; Karlin and Altschul, 1990).

Returning Local Alignments When searching a database sequence, multiple sequences

may be identified that contain locally optimized alignment scores. Altschul et al. (1997)

called these sequence segments, high-scoring segment pairs (HSPs). The alignments are

ordered by their alignment scores and expect values (e-values) (Fig. 2.8). The alignment

scores are based on the local alignments or summed local alignments of segments in the

two sequences. Not all alignments are returned and presented to the user. An alignment

may be discarded as random if its alignment score is low in relation to the overall prob-

ability of getting the same alignment score by chance within the database. In BLAST,

this is determined by the user-selected e-value at the NCBI search interface, which we

discuss further below.

2.3.3 Biological Databases

The number of publicly available databases is increasing rapidly. In addition to sequence

databases, databases have been created for organisms, images, RNA expression profiles,

signaling and metabolic pathways, and so forth. The question to answer as one selects a

database is “What type of data does the database contain?” Databases like NCBI have a

well-developed glossary and list of database content. Databases with less-developed

user interfaces or help guides require additional research to determine what kind of data

is included. The journal Nucleic Acids Research (NAR) dedicates the first issue of

every year to articles and reviews of database updates and releases. This provides a

Figure 2.8 Results of a BLAST search, arranged by alignment score with corresponding e-values.
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helpful resource for finding databases tailored to one’s research interests. These articles

include details on database design, sources and methods used to obtain data, and

associated computational tools.

The type of information found in molecular sequence databases is essentially a function

of three factors: the method by which the data was produced (laboratory experiments,

computational analysis); where the data was obtained (direct submission or retrieved

from literature on other databases); and its molecular type (DNA, RNA, protein).

Information provided by researchers or extracted from the literature is considered

primary data (Baxevanis and Ouellette, 1998) (Fig. 2.9). Data produced by applying com-

putational tools to primary data is secondary data. This is done to discover and predict

additional information such as putative phosphorylation sites, transmembrane domains,

or identity. A majority of the biological databases contain information based on both

experimentation and results of computational analysis; in other words, both primary and

secondary data, respectively.

Biological databases that contain primary nucleotide sequence data are GenBank,

European Molecular Biology Laboratory (EMBL), and DNA Data Bank of Japan

(DDJB). Primary protein sequences are entered to SwissProt and Protein Information

Resource (PIR). Databases with secondary data include protein domain and metabolic

databases that use the primary sequence data to generate new information. Increasingly,

Web sites are developed that aggregate information from multiple sources. NCBI contains

sequence data retrieved from SwissProt as well as GenBank, both primary databases.

It also contains databases with secondary data, such as RefSeq and Conserved Domain

Database (CDD).

The data within primary databases is as reliable as the data submitted, and this depends

primarily on the methods used to produce it. Regardless of who obtains the sequence data,

genomic sequencing or basic research labs, nucleic and amino acid sequencing results are

subject to errors. If the data is the result of a single-pass sequencing of genomic or cloned

DNA, it is likely to contain errors. Much of the sequence data obtained from high-

throughput labs has yet to be characterized and or validated. NCBI records contain

fields that indicate both the method by which sequences were obtained (Express Sequence

Tag (EST), Sequence Tagged Site (STS)) as well as their biological nature (genomic,

chromosomal, mRNA) (Table 2.3). The types of molecular data that databases contain

Figure 2.9 Flowchart of sequence data from labs and literature to primary sequence database and

subsequent secondary databases.
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TABLE 2.3 Examples of Molecular Sequence Types in NCBI Records

Type Description Example in Title

Genome Sequence tagged

site (STS)

A unique segment of DNA

that occurs only once in a

genome and marks a

particular location. Can be

generated from genomic

DNA or cDNA.

“Homo sapiens chromosome

1 map 1p35, sequence

tagged site”

Draft sequences

(phases 0–3)

Pieces of a genome that are

compiled from a DNA or

cDNA library. They are

usually large collections of

contigs and are in the

process of being ordered

and catalogued.

“Pan troglodytes clone

rp43-26h17, WORKING

DRAFT SEQUENCE, 46

unordered pieces”

Genome The complete genome of an

organism.

“Corynebacterium

diphtheriae NCTC 13129,

complete genome”

Chromosome Locus A known location on a

chromosome for a

particular gene or

collection of genes that

codes for a specific

function.

“Takifugu rubripes isotocin

and vasotocin locus”

Contig A contiguous segment of a

chromosome made by

joining overlapping clones

or sequences.

“Homo sapiens chromosome

22 genomic contig”

Chromosome The whole sequence of a

single chromosome.

“Homo sapiens chromosome

22, complete sequence”

Gene Domain A discrete portion of a protein

assumed to fold indepen-

dently of the rest of the

protein and which pos-

sesses its own function.

“V-like domain binding

molecule”

Complete CDS A complete coding sequence

(CDS) for a protein.

“Mus musculus gene for

G protein–coupled recep-

tor TGR7, complete cds”

Gene Whole gene sequence for a

protein or proteins.

“Homo sapiens GNAS1

gene”

mRNA

Note: all cDNA

sequences are

represented

as mRNA

Expressed

sequence tag

(EST)

A partial sequence of cDNA

in mRNA form from either

the beginning (50) or the

end (30) of a protein or

gene sequence.

“Karenia brevis EST Library

(L99-05) Karenia brevis

cDNA, mRNA sequence”

Complementary

DNA sequence

(cDNA)

A cDNA sequence in mRNA

form. A cDNA sequence is

originally coded from

mRNA, so it is a genomic

DNA sequence but without

the introns and noncoding

regions.

“Mus musculus cDNA

sequence BC034834

(BC034834), mRNA”

Complete CDS A complete mRNA sequence

for a protein coding region.

“Rattus norvegicus

SCIRP10-related protein

(SCIRP10) mRNA,

complete cds”

Source: NCBI.
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differ: genomic, chromosomal, mRNA, protein, and so forth. Performing a nucleotide-

based sequence alignment search of a database containing this many types of nucleic

acids and their corresponding sequence records is likely to produce multiple alignments.

NCBI hosts a series of databases that contain one or more data type. It has aggregated

multiple resources that make it possible for biologists to obtain basic molecular infor-

mation about a gene or protein of interest fairly quickly. At the same time that the aggrega-

tion of data makes it very useful, it also means that the absence of a well-constructed

search can result in a substantial if not overwhelming number of retrieved data records.

Although our conversation will focus mostly on the use of NCBI, one is encouraged to

examine other data and computational resources. As one’s needs and question become

more refined, the use of more tailored resources may improve one’s search results while

decreasing overall search time. These interests may be tailored by organism, molecular

type (i.e., full mRNA sequences, genomic, EST, partial sequences, etc.) or degree of

characterization (putative gene, putative or known cellular function).

2.3.3.1 BLAST at NCBI We will now look at the implementation of Basic Local

Alignment Search Tool, a.k.a. BLAST, at NCBI (Altschul et al., 1990). BLAST is one

of the most well-known sequence search algorithms. It has been integrated into many

freely available Web-based databases where the code has been licensed so that it can be

used to search these databases for similar sequences. The NCBI BLAST page (http://
ncbi.nlm.nih.gov/BLAST) provides a list of databases that can be searched within NCBI.

The original BLAST algorithm was developed for ungapped, local sequence align-

ments. It has since been modified to optimize the chances of finding a broader range of

sequence alignments with database searches. The additional alignments include nucleic

to protein acid sequences (tBLASTn), protein to protein sequence (BLASTp) and

protein to nucleic (tBLASTx). The modified BLAST algorithms are called subroutines.

This first set of subroutines take into account the nucleic and amino acid codes and

automate the translation of one code to another (Table 2.4).

Minimum Requirements To run a BLAST search, the user enters the query sequence to

be compared against the database and selects a database to be searched (Fig. 2.10). A query

can be entered to the search field by using an NCBI accession number or the sequence.

TABLE 2.4 BLAST Subroutines

Program Database Query Comments

blastp Protein Protein Uses substitution matrix for

finding distant relationships;

SEG filtering available

blastn Nucleotide Nucleotide Tuned for very-high-scoring

matches, not distant

relationships

blastx Protein Nucleotide (translated) Useful for analysis of new DNA

sequences and ESTs

tblastn Nucleotide (translated) Protein Useful for finding unannotated

coding regions in database

sequences

tblastx Nucleotide (translated) Nucleotide (translated) Useful for EST analysis
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Sequences stored in .txt files can be uploaded or copied and pasted into the BLAST search

field. When using an NCBI accession number, the search engine locates the record and

uses the sequence within the record. For example, the NCBI record NM_169061 contains

the sequence of the Drosophila melanogaster IP3 receptor. Rather than copying the

sequence to a separate file, we can type in the NCBI accession number or the gene identi-

fier number (GIj24644260). The assignment of unique identifiers makes it possible for

sequences to be retrieved at the BLAST search interface.

The default database for protein BLAST searches is the nr database. This is the histori-

cal name of the database which used to be curated to remove redundant sequences. nr

stood for nonredundant. The nr database is also available for nucleotide searches. It

Figure 2.10 BLASTp interface accessed through protein blast link on NCBI BLAST home page (http://

www.ncbi.nlm.nih.gov/BLAST). (a) By entering a query sequence (Enter Query Sequence), selecting a

database (Choose Search Set), and search algorithm (Program Selection), a BLAST search can be

performed. (b) The “Algorithm parameters” link opens a set of menus to modify parameter values.

The parameters have been assigned three categories: General Parameters, Scoring Parameters, and

Filters and Masks.
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contains records of nucleotide sequences from multiple databases: GenBank, EMBL,

DDBJ, and protein data bank (PDB). It does not contain low pass sequences such as

expressed sequence tags (EST), genomic survey sequences (GSS) or high throughput

genomic sequences (HTGS). These latter sequence types can be found in separate data-

bases or “genomicþ transcripts” databases for specific organisms.

Multiple high-scoring sequence alignments may be retrieved when blasting due to:

. Partial sequences: records of overlapping sequences are not removed from the

database.

. Multiple sources: the nucleotide sequences may be genomic, mRNA, or expressed

sequence tags and each has a separate record.

. Different species: sequence records from multiple species.

. Redundant sequences: sequences that differ by one nucleotide are treated as different

sequences in NCBI.

One approach to reducing the number of retrieved sequences is to limit the search space by

choosing the database most specific to the purpose of a search. Limits similar to those dis-

cussed for keywords are also available for BLAST searches at NCBI.

Each BLAST search can be fine tuned by varying the BLAST program parameters

(Table 2.5). The tunable parameters include selecting a substitution scoring matrix,

word size, gap penalties, filters, sequence composition, and acceptable expect score. We

introduce the BLAST algorithm parameters that can be varied to optimize sequence simi-

larity searches for one’s purposes (Fig. 2.10).

Word Size BLAST aligns two sequences relatively quickly by first searching for

matches between words generated from the query sequence and those in the database

index of target sequences. The word size sets the number of nucleotides to be used to

search the database. The word index matches identical and neighboring words to the

TABLE 2.5 Adjustable Parameters for BLAST Search at NCBI

Blast Field Purpose

Expect Sets the e-value limit that you are willing to accept in the found

matches. The higher the e-value, the more distantly related

sequences may be found and the more likely a random sequence

match could obtain similar alignment scores.

Word size Sets the minimum initial residue length for beginning an alignment:

align three residues, four, and so forth. More hits are likely to be

obtained with smaller word sizes.

Matrix Scoring matrices (PAM or BLOSUM ) used to determine alignment

score between two sequences.

Gap costs Penalty value for the presence and length of gaps in the sequence

alignment. The set value contributes to the overall alignment score.

Compositional adjustments Used in protein sequence alignments to take into account proteins

whose amino acid composition has a significantly different amino

acid frequency that what is assumed in the substitution matrices

(PAM and BLOSUM).

Filters Filters are employed to mask areas of low complexity in nucleotide

sequences, e.g. GC or AT rich regions. This reduces obtaining high

scoring matches due to low complexity regions.
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query string. Each successful alignment of the query word to a target sequence is known as

a hit. For the alignment to be considered a hit, its aligned score must be above a cutoff

threshold or be discarded (Altschul et al., 1997).

Scoring: Substitution Scoring Matrices The scoring process is similar to the process

mentioned previously for pairwise local alignments. Residue pairs within the aligned seg-

ments are scored based on identical, mismatched, or gapped pairs. The scoring schemes in

BLASTp, protein-protein sequence search, use substitution matrices: PAM and BLOSUM

(Dayhoff, 1978; Henikoff and Henikoff, 1992). The substitution matrices are reference

tables of residue match scores assigned based on the probability of a substitution occurring

for any given residue (Fig. 2.11).

The matrices tune the search algorithm to find either highly conserved (high similarity)

or very divergent sequences (lower similarity) (Fig. 2.12). PAM (percent accept mutation)

matrices predict a frequency of substitutions based on assumed evolutionary distances

(Dayhoff et al., 1978; Schwartz and Dayhoff, 1978). A PAM 1 matrix predicts the fre-

quency of a given substitution when only 1 mutation in 100 sites occurs; that is, 1% of

amino acids change (Dayhoff et al., 1978). The value assigned to the substitution is

based on its evolutionary probability. For example, a conservative nucleotide or amino

acid substitution, a hydrophobic amino acid for another, will occur more often within

highly related sequences than a nonconservative substitution, hydrophilic for hydrophobic

Figure 2.11 BLOSUM 62 matrix. The observed frequency of amino acid pairs is calculated from

sequences in the BLOCKS database, which are grouped by percent identity. The observed frequency

is divided by the so-called frequency of the pair occurring by chance. The log of this quotient, observed

frequency over chance frequency, is then taken and entered as the score for the aligned pair.
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(Dayhoff et al., 1978; Altschul, 1991; States et al., 1991; Henikoff and Henikoff, 1992).

The frequencies of the substitution was established in the creation of PAM 1. The fre-

quency for a given amino acid substitution (i.e., alanine for threonine) in the PAM 250

matrix is extrapolated from the initial PAM 1 by assuming the same initial frequency

occurring independently 250 times, (i.e., PAM 1 multiplied against itself 250 times).

The PAM 250 creates better scoring alignments for distantly related proteins (14–27%)

similarity than lower PAM matrices (George et al., 1990).

The block substitution matrices, or BLOSUM, are also based on the frequency of amino

acid substitutions between sequences. However, instead of predicting the amount of

substitutions between sequences based on evolutionary distances, the frequencies were

calculated from the number of substitutions found empirically within highly conserved

sequence stretches called blocks. For example, the number and type of substitutions

in sequences that were 62% identical were used to generate the BLOSUM 62 matrix

(Henikoff and Henikoff, 1992). The values given to specific residue pairs in BLOSUM

are based on the observed frequency of that substitution in sequences with a specific

percentage of identity. BLOSUM 62 has been shown experimentally to be good for

finding weak protein similarities (Henikoff and Henikoff, 1992).

Gap Costs Related and not necessarily identical sequences, when aligned, have insertions

and deletions that appear as gaps in the alignment. If an alignment with few gaps is desired

(i.e., highly similar sequences or regions), the aligned sequences should be penalized in their

score for having gaps. If greater divergence is desired, gaps are acceptable and sequences

should be penalized less. The gap penalties in BLAST allow the user to set the negative

value used for the presence and length of gaps in the alignment. As mentioned earlier, it is

the fine tuning of gap penalties, match and mismatch scores that affect both length and

quality of the alignments returned. When using local alignment methods, a high gap

penalty for the presence and length of gaps can result in short, highly conserved alignments.

As the penalty for the presence of gaps is decreased, longer extensions are expected.

Gapped alignments at NCBI are the default method (Altschul et al., 1997). The severity

of the penalty is set by two factors: that a gap exists, “Existence,” and the length of the gap,

Figure 2.12 Diagram indicating sensitivity of PAM and BLOSUM matrices for divergent sequences.
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“Extension.” Because a single mutational event may cause the insertion or deletion of

more than one residue, the presence of a gap is frequently ascribed more significance

than the length of the gap (Vingron and Waterman, 1994). Gap penalties are selected

from the drop down menu for the “Gap Costs” (Fig. 2.10).

Filters DNA sequences contain regions of low complexity. These are areas in which the

base composition is dominated by one or two nucleotides (e.g., GC-rich regions or Alu

sequences in DNA). The presence of low-complexity regions can result in sequence align-

ments having high similarity scores because of the alignment of these regions between

DNA sequences (Altschul et al., 1994). The filters available with BLAST identify

regions with the query sequence that are characterized as low complexity and instead sub-

stitute Xs for amino acid and Ns for nucleic acid residues in order to bypass high scores

from aligning these regions (Wootten and Fedheren, 1996).

Expect The expect parameter in NCBI’s BLAST sets statistical significance threshold

for sequence alignments. The e-value (expect value) is a statistical measure for each

alignment that determines the probability of obtaining an equivalent alignment score—bit

or S score—if a random sequence of the same length were used with the same BLAST

parameter settings (Karlin and Altschul, 1990). A higher e-value says that there is a

high probability that a random sequence of the same length would obtain the same or

better alignment score. The lower the e-value, the less likely another sequence with a

better score will be found in the database, and therefore the score is more significant.

By setting an e-value at the BLAST interface, one limits the displayed alignments to

those with the same e-value or lower.

The e-value is the calculated likelihood of aligning a random sequence to any of the

thousands to hundreds of thousands of sequences in the database (Karlin and Altschul,

1990). It answers the question for two proteins idealized as a random ordering of indepen-

dently selected amino acids: “What is the likelihood of obtaining an alignment score, S,

within the database?” In the BLAST algorithm, the expect value can be used as a signifi-

cance threshold.

2.3.3.2 Displaying Results The number of records retrieved depends on the data-

base used and the type of search done. By performing a BLAST search of the nucleotide

or protein sequence database, sequences containing “significant” alignments based on

one’s parameter settings are returned. The format options on the NCBI BLAST search

pages set the display options for one’s results. The default settings provide a graphical

view of the highest scoring alignments, followed by a list of record names with links to

the corresponding alignments and target sequence record. The number of alignments

shown below the graphical display depends on the value one chose in format options for

the number of returns and expect values (Fig. 2.13). NCBI also provide links to other data-

bases that it hosts when additional information concerning the alignment or retrieved target

sequence is available. For nucleotide searches, the links may be to UniGene or LocusLink.

Proteins may have links to the NCBI domain or protein structure databases.

The NCBI visualization tool plots the number of residues of the query sequence as a bar

scale of length (Fig. 2.13A). Aligned sequences are shown below the bar. These segments

range from red bars, indicating alignment scores of.200 that extend the full length of the

query sequence, to black slashes dotted over the length of the query, indicating the absence

of alignment between stretches of high scoring pairs. The longer alignments are often

splice variants of nucleotide queries, protein isoforms, or redundant sequence records
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Figure 2.13 Results of a BLAST query. (A) Graphical results: (1) The number of regions from the target

database that aligned with the query sequence. Multiple regions can be identified for a single hit

sequence. (2) The query sequence with span of base pairs indicated. If a unique identifier is entered

for the query sequence, the gene accession number is displayed to the left. (3) The graphical represen-

tation of the hit regions compared with the query sequence. Regions are color-coded according to the

bit score of the region. Regions that are connected with a hatched line represent a single hit sequence

with multiple regions of alignment. Detached regions on the same line represent unrelated hits. Clicking

on a region will take one to the sequence alignment. (B) List of records producing hits. (4) List of hit

identifiers and scores in order of e-value. Clicking the identifier takes one to the full sequence record.

Clicking a score takes one to the sequence alignment. (C) Alignment information for hit highlighted in

(B). (5) Multiple identifiers indicate redundant records for the target sequence and are counted as one

sequence hit. (6) The score and characteristics of the query/target sequence alignment.
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(i.e., GenBank, RefSeq). The shorter, lower similarity regions may arise from common

sequence motifs such as phosphorylation sites or putative kinase domains that are

conserved across proteins and not specific to its overall identity. When such motifs are

found, NCBI provides a link to its in-house domain database CDD as well as external

records in protein family or domain databases.

List of Alignments The alignments are listed with their sequence ID, the database

source, accession number for the sequence record, followed by the organism and assig-

ned name (Fig. 2.13B). Each sequence record is shown with the alignment score (bit

score) and e-value. The bit score measures the quality of the alignment between the

query and retrieved sequence, only taking into account the region or regions that are

aligned within the pair. The lowest e-value possible is 0 and is typically associated with

nearly identical sequences (e.g., splice variants, isoforms, and redundant records). Less

significant e-values (higher numbers) are obtained with shorter stretches of alignment

and as the overall quality of the alignment decreases. Any alignment with an e-value

greater than 0.02 has a 20% chance of obtaining the same alignment score by searching

with a random sequence. These alignments should be examined thoroughly before accept-

ing it as something statistically or biologically significant.

NCBI Search Statistics NCBI provides a set of statistics regarding one’s search. The

number of hits, attempted and successful gapped extensions is of particular interest for

evaluating the success of a sequence alignment search and BLAST parameter settings.

The number of hits as well as the extension threshold reflects the success of the word

size on generating hits in the database. If very few hits are generated, a smaller word

size may be chosen to increase the hit number. By generating more hits, the number of

attempted extensions will also increase. Gap penalties and substitution matrices also

affect overall extension and quality of alignments.

Detail 2.4
Reading score and characteristics of the query/target sequence alignment.

Identities Number of base pairs that match out of the total and add to score. Identities

are indicated by the same letter between the query and target sequences.

Positives Number of identities plus the number of acceptable substitutions as

determined by the substitution matrix, both of which add to the score. Acceptable

substitutions are indicated by plus signs (þ) on the sequence alignment.

Gaps Number of single residue gaps in the query and target sequences. Gaps are

indicated by a dash (2) on the sequence alignment.

2.4 CONCLUSION

The text here provided a brief introduction to the basis of pairwise sequence alignment and

searches for statistically significant alignments within biological databases. We attempt

here to provide both background information on the development of sequence alignment

methods and instruction for the commonly used search tool, BLAST.
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Algorithms tailored to search for similar sequences within databases are typically

developed with rules designed to speed up the search process. The rule in BLAST is to

wait until two hits are obtained within a given sequence before performing a full align-

ment. The developers have shown that this rule retains sensitivity while increasing

search speed. The trade-off is that such tools may miss biologically significant alignments.

Once target sequences are identified using search tools, it is important to run a series of

confirming tests: (1) use the target sequence as a query sequence; (2) randomize query

sequence and see if the same sequence is obtained; (3) run a global or local alignment

algorithm independent of the database. The latter process allows the compute time to be

dedicated to performing a full search for the optimal alignment.

For the scale of sequence alignment and database searches discussed in this chapter, very

little compute resources are required. Bioinformatics resources are frequently made avail-

able via the Web as exemplified by the NCBI resource. Additionally, the National Science

Foundation and other funding agencies have invested in research resources—data storage,

compute time, and software—that are publicly available. As such, typically initial research

can be performed with a Web browser and ethernet connection, 10 Megabits (Mbits) per

second. These same resource providers have workshops and tutorials available for

members of the research community to learn about and make use of these tools.

More in-depth discussions of alignment methods including hidden Markov models and

advanced scoring schemes can be found in books dedicated to sequence analysis and in

molecular sequence–focused bioinformatics texts (Baxevanis and Ouellette, 1998;

Durbin et al., 1998; Mount, 2001). As well, the methods of sequence alignment and

database searches have become sufficiently standard that protocols are now available

for the lab.
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Chapter 3
Family-Domain Databases

Once a protein sequence is obtained, there are many questions that can be asked. What is

the protein’s overall identity? What putative functions does it have? What biological

motifs are present? A number of databases have been tailored to help answer these ques-

tions. In this chapter, we will look at the types of information that can be obtained regard-

ing protein putative functions via family and domain databases. Protein identity is

typically determined by performing global dynamic programming sequence alignments

with related sequences. The methods for predicting structural and functional features of

proteins are designed to exploit characteristic sequence patterns and amino acid frequency

and properties. Different computational tools are needed to determine possible functional

domains based on primary sequence data.

Family and domain databases are used to address the question, “What domains are con-

tained within this sequence? or what family does this protein belong to?” Although, some

family and domain databases were developed with the intent to annotate genomic sequences,

basic researchers are also interested in using these tools to better characterize their proteins of

interest. To answer the questions of what families the sequence belongs to or what domains

does it contain, we must first define what we mean by families and domains. In the following

sections on protein families and domains, we discuss how the biological patterns are defined

and modeled in secondary databases such that new information is obtained.

3.1 DEFINITIONS: FAMILY AND DOMAIN

3.1.1 Biological Definitions

It is helpful to begin our discussion of family and domain databases by defining key words

that are used to describe the data they contain. The biologically significant terms used in
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the family-domain databases are family, domain, and motif. Each identifies biological

characteristics that are conserved across a set of proteins and associated with a biological

functionality.

A family of proteins was originally defined by Dayhoff et al. (1978) as a group of

sequences with more than 50% identity when aligned with similar function. Families

are often also characterized by the presence of one or more domains with high

sequence similarity.

Domains, traditionally known as structurally independently folding units, are conserved

functional units that may contain one or more motifs.

Motifs are conserved across proteins at the level of sequence or structure or both. They

include both short stretches of fixed residue length that act as sites for

post-translational modifications, phosphorylation, and longer sequences that form

secondary structures for protein-DNA, protein-ion, or protein-lipid interactions.

The terms consensus sequence, pattern, and signature are generally used to refer

to the sequence or structural traits that define a motif, domain, or family (Table 3.1).

Protein families are made up of proteins related to one another by sequence similarity,

domain composition, or structure. These include proteins found across species (ortholo-

gues) or within the same species (paralogs). Once families are identified experimentally,

familial descriptors can be created for identifying and classifying future family members.

The family description is typically derived from multiple sequence alignments (MSAs)

that enable us to define traits that encompass all member sequences. Family descriptors

have been based on sequence identity (e.g., .50% identical); common domains (e.g.,

kinase catalytic domain, calcium binding motifs, etc.); structure (e.g., bundle of seven

transmembrane helices); or a combination of these characteristics.

Domains represent discrete stretches within the protein, unlike protein families, which

are commonly defined over the length of the sequence (Fig. 3.1). Domains are functional,

structural units within proteins. The structural definition of a domain is an independent

folding unit (e.g., alpha helices) (Fig. 3.1). These units are conserved at the level of

sequence and structure. Domain databases formalize the descriptions of domains by defin-

ing combinations of short regions of highly conserved amino acids within a domain;

domain length descriptions that take into account all amino acids; or the domain’s struc-

tural features. Domain traits are delineated in the same fashion as protein families: mul-

tiple sequence alignments are created, and a domain description is developed that

accounts for its pattern of amino acids.

An implied characteristic of all motifs is that it is a pattern retained in homologous pro-

teins that is the basis for homologous functions (Blundell et al., 1983). Thus, motifs such

as SH2 domains, calcium binding domains, and plecktrin repeats are found in multiple

TABLE 3.1 Term

General Identifiers Biological Object Defined By

Pattern, signature, consensus Family Sequence, structure

Domain Sequence, structure

Motif Sequence
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Figure 3.1 Examples of protein families, domain, and motif. The protein family is cadherin. Shown are

titles of protein records for members with SwissProt (release 34.0) naming convention taken from

PRINTS. Sample architectures obtained from Pfam containing the cadherin domain. Icon for cadherin

domain shown next to structural image from PDB record 1edh of the cadherin domain (Nagar et al.,

1996). Also shown is a structural depiction of the cadherin domain. PRINTS motif for cadherin

domain, only one of seven motifs shown.
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proteins. Because of the reuse of motifs and domains, similarities can be found within

sequences that are otherwise unrelated evolutionarily. Motif searches often involve a

highly conserved and relatively short stretch of amino acids compared against a fairly

large database. A pairwise alignment search (e.g., BLAST or FASTA) is vulnerable to

losing hits as a result of the alignment score of a small stretch of amino acids being too

small relative to statistical significance (Tatusov et al., 1994). As well, if a hit is returned,

a number of false positives are statistically likely to be found because of the size (i.e.,

number of residues) in the database. Because proteins can be functionally related and

have very little conserved sequence similarity (e.g., globins), methods are needed to

distinguish between similarities due to random variation and those of common origin or

function (Lesk and Clothia, 1980; Bork and Gibson, 1996).

The family-domain databases provide the following benefits:

Increased sensitivity in database searches: Sensitivity refers to the ability of the search

algorithm to detect all true matches. Search methods for identifying motifs or

domains in a sequence typically use information derived from multiple sequence

alignments. This enables the search algorithm to identify biologically and statisti-

cally significant similarities that might be missed with a single local alignment

search with a “representative” sequence (Henikoff, 1996).

Increased specificity for identifying functionally similar proteins: Specificity refers to

the ability to detect only related proteins. Functionality occurs predominately at the

level of structures within domains (Blundell et al., 1983; Sweet, 1986). Basing

searches for similarity on domain representations increases the specificity of the

search for functionally related proteins.

Classification of protein sequences: The domain databases create an indexed access to

protein sequences, in which sequences are classified according to family

assignments.

3.2 FAMILY-DOMAIN DATABASES

Family and domain databases were developed to help catalogue and automate the

detection of protein domains and family members. Both types of databases identify

families of proteins; however, they differ in the formalized definition of family. For the

protein family databases, the focus is on the characterization of the protein sequence as

an entire unit, in which protein domains are a part. For domain databases, domain families

consist of a set of proteins that are related based on the presence of the domain in the

sequence. Both involve the characterization of domains, however the change in emphasis

influences the classification methods used. We will refer to the set of databases defining

family and domains as the family-domain databases and focus our discussion on the

characterization of domains.

We focus on methods used to develop a few classic and more popular databases. These

databases include PROSITE, BLOCKS, PRINTS, Pfam, and Simple Modular Architecture

Tool (SMART) (Table 3.2). It is helpful to know the biological focus of the different

databases. The majority of these databases focus on classifying families, subfamilies,

and domains. Subfamilies are those proteins that share greater similarity with one

another than with other members of the family and yet are still members of the family.
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Myoglobins and hemoglobins are two subfamilies of the larger globin family. The

majority of myoglobins will show greater similarity of structure and sequence with

each other than they will with a hemoglobin.

PROSITE classifies both family and subfamilies and lists the subfamily representation

within the family documentation. Pfam attempts to classify large families and makes no

distinctions between subfamilies. PRINTS develops individual representations for each

subfamily using BLOCKS. BLOCKS characterizes highly conserved motifs. The

primary focus of SMART is on the development of domains such that domain families

are determined rather than protein families. Each database develops a model of the

family that is a characterization of the motifs and domains within the proteins

(Table 3.3). These models are then used to further classify and identify additional

sequences. A family descriptor is useful when it is sensitive enough to detect divergent

members yet specific enough to detect only family members.

The family descriptors have been based on the domain composition and order of

discrete conserved regions, or by a matrix representation of the full-length sequence. Iden-

tifying multiple domains within a sequence increases the sensitivity of the algorithm for

proper classification of divergent sequences (Sigrist et al., 2002). When motifs are

found in the context of multiple, ordered motifs, the likelihood of detecting an accurate

TABLE 3.2 Database References

Name Web Address Description Reference

PROSITE http://www.expasy.ch/prosite Groups of proteins of simi-

lar biochemical function

on basis of amino acid

patterns

Hulo et al. (2006)

PRINTS http://www.bioinf.man.ac.uk/
dbbrowser/PRINTS/

Protein fingerprints or sets

of unweighted sequence

motifs from aligned

sequence families

Attwood et al.

(2003)

BLOCKS http://blocks.fhcrc.org/ Ungapped blocks in

families defined by the

ProSite catalogue

Henikoff et al.

(1999);

Henikoff et al.

(2000)

Pfam http://www.sanger.ac.uk/Pfam Profiles derived from align-

ment of protein families,

each one composed of

similar sequence and

analyzed by hidden

Markov models

Finn et al. (2006)

SMART http://smart.emblheidelberg.de/ Genetically mobile domains Letunic et al.

(2004)

InterPro http://www.ebi.ac.uk/interpro Integrated resource of

protein domains and

functional sites: combi-

nation of Pfam, PRINTS,

ProSite, and current

SwissProt/TrEMBL

sequence

Mulder et al.

(2005)

PIR http://www.nbrf.georgetown.edu/
pirwww/index.shtml

Family and superfamily

classification based on

sequence alignment

Wu et al. (2003)
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fingerprint of a protein family increases despite the possible presence of low-scoring indi-

vidual motifs (Scordis et al., 1999; Wright et al., 1999; Attwood et al., 2003, 2005). The

assertion that the ability to identify multiple domains of signaling proteins improves

sensitivity for such proteins was the premise for building SMART (Shultz et al., 1998;

Letunic et al., 2006).

3.3 CREATING DOMAIN REPRESENTATIONS

Multiple strategies have been employed with family-domain databases to achieve the goal

of accurate inclusion and exclusion of sequences as family members. The strategies are

distinguished by their choices within the multistaged process of creating the database.

The steps are (1) selection of initial sequences, (2) method of multiple sequence alignment,

(3) type of representation of family, and (4) method of comparison or matching. Based on

the choices made at each step, different results may be obtained from the databases. We

spend the next pages reviewing each step and the methods employed by all or some of

the databases in their process of classifying protein family-domains.

3.3.1 Initial Sequences

An “initial set of sequences” is selected to establish the defining characteristics of

members of the protein family, domain, or motif. As shown in Table 3.4, the selection cri-

teria for initial sequences, also known as seed sequences, have varied from one database to

another. PROSITE develops a pattern for proteins that have been identified in the literature

as functionally or structurally similar (Sigrist et al., 2002). BLOCKS selects sequences

based on their degrees of similarity (Henikoff and Henikoff, 1994). SMART sequences

were selected from proteins with known 3D structures (Schultz et al., 1998; Letunic

et al., 2006).

TABLE 3.3 Approaches to Defining Families and Domains

Database Approach

PROSITE Families or domains defined by conserved regions

PRINTS Families defined by multiple conserved regions

BLOCKS Domains defined by highly conserved regions

Pfam Families or domains defined by entire domains

SMART Families defined by multiple entire domains

Step 1 of creating family-domain database.
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In order to identify distantly related members, the initial sequences used to construct the

family representation ideally contain at least one representative of divergent sequences.

By selecting sequences that include divergent sequences, we set the groundwork for creat-

ing the multiple sequence alignments (MSAs) and representations that can detect distantly

related sequences. Additional strategies for increasing representation of distantly related

sequences within the initial set of alignments include (1) limiting the number of identical

sequences used within the alignment, (2) using other inclusion criteria other than sequence

similarity (i.e., structure), and (3) increasing the scoring weight of more divergent

sequences within the MSA.

3.3.2 Multiple Sequence Alignment

Multiple sequence alignment methods provide a more sensitive diagnostic tool than pair-

wise alignments. Multiple methods for MSA exist (Table 3.5). They may be manual or

automated, iterative or progressive, and obtain gapped or ungapped, local or global align-

ments (Bairoch, 1992; Henikoff and Henikoff, 1992; Thompson et al., 1994; Lassmann

and Sonnhammer, 2002). The family-domain databases typically employ automated or

semiautomated methods, which use automated alignment tools to create an initial MSA

and follow it with a manual examination of the alignment quality. CLUSTAL W, a

global progressive alignment method, is the most commonly implemented method in

the databases discussed in this chapter (Thompson et al., 1994).

Progressive alignment methods begin with a series of pairwise alignments to create a

phylogenetic tree that is then used as a guide tree for the MSA (Fig. 3.2). There are

three different approaches to constructing the phylogenetic tree: maximum parsimony, dis-

tance matrix, and maximum likelihood. The tree nodes and branches closely duplicate the

sequence data in terms of differences in residues between sequences. CLUSTAL W uses a

Step 2 of creating family-domain database.

TABLE 3.4 Initial Sequences

Database Includes Selection Method

PROSITE Sequence and structure Manual

PRINTS Sequence Automated

BLOCKS Sequence Manual and automated

Pfam Sequence Semiautomated

SMART Sequence and structure Automated
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distance matrix method that first determines the global similarity between sequences using

the general substitution matrices (BLOSUM 80). The neighbor-joining method is then

used for tree construction (Saitou and Nei, 1987). Closely related sequences are aligned

first at either the root or branches of the tree, and then more distantly related sequences

are added (Feng and Doolittle, 1987; Thompson et al., 1994).

3.3.3 Representations: Domains and Families

Once the MSA is obtained from the initial sequences, the protein family and domain traits

are derived and represented as one of the following: alignment blocks, consensus sequence,

expression pattern, position-specific scoring matrix, profile or hidden Markov model

(Gribskov et al., 1987; Baldi et al., 1994; Krogh et al., 1994; Tatusov et al., 1994; Eddy

et al., 1995; Henikoff, 1996) (Table 3.6). These different representations can be classified

as creating representations for short stretches of highly conserved residues or for all residues

of the characterized protein or protein region within the MSA.

Block, consensus sequence, and expression patterns are representations for discrete

regions of highly conserved amino acids, not the entire domain (Fig. 3.3). The term

block and the corresponding BLOCKS database were developed by the creators of

BLOSUM weight matrices (Henikoff and Henikoff, 1992). Blocks are short, ungapped

stretches of amino acids that are conserved across sequences with different percentages

of identity (80%, 62%, etc.). A consensus sequence as defined by Gribskov et al.

(1987) is a composite representation of the amino acid usage in the motif, derived from

the amino acid frequencies and PAM score at given positions within the protein sequence.

Expression patterns are defined by PROSITE as stretches of strongly, but not absolutely,

conserved residues separated by characteristic spacing.

Step 3 of creating family-domain database.

TABLE 3.5 Progressive Multiple Alignment Methods

Program Alignment Type Representation

Clustal Wa Global Generalized profile

POAb Local Graph

T-Coffeec Local Words

aThompson et al., 1994.
bGrasso and Lee, 2004.
cNotredame et al., 2000.
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Figure 3.2 Example of a phylogenetic tree created using a distance matrix. (a) Six amino acid

sequences of the same length. (b) The distance matrix shows the number of non-identical residues

between each pair of sequences. (c) The pairwise distances are used to construct the phylogenetic

tree. Sequences and distance matrix were created in EvolSeq 1.2 (Weisstein and Jungck, 2006), avail-

able online through the Biological ESTEEM Project at http://bioquest.org/esteem.
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In contrast, position-specific scoring matrices (PSSM), profiles, and HMMs develop

models in the form of matrices that characterize all residue positions in the length of

the protein family or domain within the MSA. By describing all residues, the matrices

create a representation encompassing the nonconserved regions as well as the conserved.

The result of having representations of the entire domains is increased sensitivity for

divergent family members (Gribskov et al., 1987; Krogh et al., 1994; Gribskov and

Veretnik, 1996; Eddy, 1998).

The relative distribution or the frequency of residue usage in a position within the motif

can be different than what is expected for amino acids when position-specific information

is not taken into account (i.e., based on PAM or BLOSUM). The PSSMs are derived from

the frequency of amino acid usage at each position of the aligned sequences. One axis of

the matrix is the length of the aligned sequences. The opposite coordinate contains the 20

amino acid residues and gaps. A score is assigned based on whether and how often

(frequency) the amino acid appears within the aligned sequences and the random

probability that the amino acid appears. The probability for any amino acid is 1/20.
The completed matrix provides a score for any amino acid at each position of the

aligned sequences. The matrix is a specific scoring matrix for the family rather than a

general substitution matrix for all proteins.

TABLE 3.6 Database Method of Representation

Database Method of Representation

BLOCKS Alignment of conserved region in multiple sequence

(blocks); motif HMM

PRINTS Multiple blocks; motif HMM

PROSITE Regular expression pattern; profiles

Pfam Profile HMM

SMART Entire profile HMM; consensus

Figure 3.3 Illustration of consensus patterns. (a) The consensus sequence for the EFh domain is taken

from SMART. (b) The PROSITE database develops expression patterns that reflect the consensus

sequence of the aligned family. The pattern is for tyrosine protein kinases.
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Highlight 3.1

The position specific scoring matrix (PSSM), first proposed by Gribskov as profile

analysis (Highlight Fig. 3.1.1), introduced a method to take into account the frequency

of amino acid usage within aligned sequences. The aligned amino acid sequences are

used to generate a matrix of average frequencies of amino acid usage at each pos-

ition, W(b, p). Gribskov then combined the average frequency with the Dayhoff fre-

quency counts for all proteins, Y(b, p) to produce the matrix of position specific

scores, M(p, a). Thus, the biologically occurring mutation frequency of amino

acids as described by Dayhoff is accounted for together with the averaged frequency

of amino acids in the aligned sequences. The position specific score for a given amino

acid, a, at position, p, is formally described as M( p, a) ¼
P20

b¼1 W( p, b)� Y(a, b).

Highlight Figure 3.1.1 Sample profile, position specific scoring matrix. Four probe sequences of the

immunoglobulin variable-region domain are aligned vertically to the left (PROBE). The 49 residue

positions (POS) are listed to the left and a derived CONSENSUS sequence to the right. The PROFILE

has 21 columns, one for each amino acid and the rightmost column of the profile gives the penalty for

insertion/deletion (þ /2). Positions 31–47 of the profile were omitted from the figure for clarity. This

figure and modified legend was reproduced with permission from Gribskov et al., 1987. PNAS 84,

4355–4358.
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Terms for Matrix of Position Specific Scores Defined

Wðb; pÞ ¼
nðb; pÞ

NR

The average frequency is determined by number of times that the amino acid b appears at

position p in the aligned sequences over the number of residues.

n(b, p) ¼ the number of times that the amino acid b appears at position p in the aligned

sequences. Position p is on the y-axis and amino acid b is on the x-axis of the

matrix.

NR ¼ the number of residues in the aligned sequences is equivalent to the length of

the sequences. The residue positions appear as rows. The profile matrix shows

an abbreviated row of 49 residues.

Y(b, p) ¼ Matrix of mutational frequency in proteins such as PAM-Dayhoff (see Chapter 2).

Weighting particular sequence contributions within the MSA is done to ensure

that sequences that are underrepresented in number (i.e., due to fewer orthologues than para-

logs) are equally represented. Different weighting schemes are used to establish the contri-

bution of individual sequences and their residues to the scoring matrix. These schemes are

designed to increase sensitivity of the PSSM to divergent member sequences (Henikoff and

Henikoff, 1992; Vingron and Sibbald, 1993; Luthy et al., 1994; Thompson et al., 1994). The

original PSSM and profiles were modified to take into account the rates of substitutions that

occur in all proteins and on evolutionary scales. Incorporating the general substitution

scores (Dayhoff PAM scores) increased the sensitivity of the specific scoring matrix to

divergent members of the family (Gribskov and Veretnik, 1996; Henikoff and Henikoff,

1996). Evaluation of these schemes has led to the consensus that it does not matter signifi-

cantly which scheme is used but rather that one be used (Henikoff and Henikoff, 1996).

Increasingly, HMMs are used to model families and search databases. A hiddenMarkov

model (HMM) is a probabilistic model of the family derived by aligning an initial set of

sequences and determining the probability of any amino acid being matched, deleted, or

inserted in any given position within the sequences (Eddy, 1998). This is known as the

profile HMM, which is used by PROSITE, Pfam, and SMART. HMMs are considered to

be one of the more inclusive and accurate methods for identifying protein family

members. The accuracy of the HMM, similar to all representations, is dependent on the

sequences used to build the representation and the parameter values selected for cutoff

and inclusion of sequences as matches to the model.

3.3.4 Matching: Finding New Members

Step 4 of creating family-domain database.
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Once sequences are chosen, alignments made, and representation created, the developers

use the family-domain database representations to search for known and unknown family

members within sequence databases or test data sets (Edgar, 2004; Thompson et al., 2005)

(Table 3.7). The search determines if the family descriptor improves the sensitivity or

specificity for finding family members. Already characterized family members serve as

a positive control and measure of sensitivity. Previously uncharacterized sequences are

evaluated to determine if they are true matches (an indication of increased sensitivity)

or false positives (decreased specificity).

3.3.4.1 Scores Thematch score is the score of an alignment betweenquery andmotif or

domain. Match scores are generated by moving the matrix along the sequence and determin-

ing the best alignment score possible. When the scoring matrices (profiles, HMMs, and

PSSMs) are used tomatch sequences, the alignmentmay be global or local. A local alignment

is a match to part of the scoring matrix, and a global alignment requires the entire represen-

tation to be matched.

Because the methods of representation and searches differ from one database to

another, the statistical measures of significance also differ slightly. The common charac-

teristics are that a match score is generated between the query sequence and domain rep-

resentation, created with a variant of dynamic programming. The match score is then used

to determine a measure of the probability that it was obtained by chance and a measure of

the likelihood of obtaining the score based on the size of the database (e-value). Recall

from Chapter 2, the higher the e-value the more likely a match score could be obtained

by chance (Karlin and Alschul, 1990, 1993).

3.3.4.2 Cut off The alignment scores between the domain representation and

sequences in the database are used to generate a distribution. The score distribution

gives some indication of how specific or sensitive the representation is for family

members. Ideally, one obtains a predominantly bimodal distribution (Fig. 3.4) with

related sequences distributed at one end and unrelated sequences at another. The distri-

bution scores are then used to select typically two threshold values that define the

family, known as a gather cutoff and trusted cutoff. The lower of the two is a score that

identifies all likely matches to the domain. The higher cutoff score corresponds to the

lowest match score for a known member of the family. Despite the attempt to tune

cutoff values to highly sensitive, yet family specific settings, the exact value is arbitrary

and its success depends on the mode/representation and the distribution of hit scores.

Empirically selected cutoff values are likely to produce the best results for achieving

highly sensitive and specific matches.

TABLE 3.7 Primary Protein Sequence Databases

Database Content

SwissProt All known protein sequences

SwissProt/

TrEMBLa
Known protein sequences and

translated sequences from EMBL

UniPROT Sequence-based protein families

BAliBASE Structurally aligned MSAs

Pretab Structurally aligned MSAs

aSwissProt/TrEMBLE is searched byPfam, SMART, and PROSITE (Lutenic et al., 2004).
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3.3.4.3 e-values The e-value is a statistical measure for each match that determines

the probability of obtaining an equivalent score—bit or raw score—if a random sequence

of the same length were used to search the database (Karlin and Altschul, 1990). A higher

e-value says that there is a high probability that a random sequence of the same length

would obtain the same or better alignment score. The lower the e-value, the less likely

another sequence with a better score will be found in the database and therefore the

score is more significant. The likelihood of a score being found by chance increases pro-

portionally with the size of the database. Match scores for sequences to families and

domains that are modeled by PSSMs or HMMs are converted to log odds values that

can be used to calculate the e-value.

Proteins may have more than one e-value. One e-value is for the overall sequence and

the others for the domains within the sequence. The sequence e-value score in databases

such as PRINTS is the sum of all domain scores. Thus, an overall e-value for a sequence

becomes higher with each additional domain found. Such a sequence containing multiple

domains may have a bad e-value score, i.e. high score or greater than 0.05, and an accep-

table gathering cutoff score for the family due to its match score. Conversely, in Pfam, a

low domain e-value may be returned to the user because the entire sequence contains mul-

tiple domains. It is generally accepted that the presence of multiple domains increases the

likelihood that a domain does exist within the sequence.

3.3.5 The Records

The family-domain databases maintain at least two types of records. One is the domain

record that contains the initial sequences, MSA, and representation of the family or

domain. The second type of record is sequence records of proteins that have been found

to be related to the family-domain records. The family representation is used to search

against primary protein sequence databases to identify related sequences that were not

Figure 3.4 Illustration of distribution of sequences by match score. Those with a high score are

considered homologues, while those with a low score are not. Sequences falling between may be weak

matches.
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included in the initial sequences used to create the family-domain representation (Fig. 3.5).

The domain records are subsequently updated with the newly found matches and the indi-

vidual sequence records of the matches are stored in the database.

3.3.5.1 Family-Domain Assignments: True-False, Positive-Negative In

most of the databases, annotation of the records is an automated process that is curated

afterward. The uncurated results of the search may be true or false predictions. The four

categories of possible results are true-positive, false-positive, false-negative, or true-

negative result. These precalculated results are stored in the database as part of the

domain or sequence records.

The category assignments are based on both empirical data—sequences already known

to be in the family—and the match score of the alignment. A true-positive hit includes

sequences that are known experimentally to have the domain and those sequences that

have alignment scores significantly higher than the threshold for matching the domain.

False positives are matches to the representation that occur by chance. Manual examination

Figure 3.5 Schematic of domain database searching. Domain database representations are used to

search sequence records for matches. The results are stored as part of domain and sequence records.
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of sequence alignment and biological context determine that the sequence does not contain the

domain. Negative results are sequences that fall below the gather thresholds values for the

family. False negatives are those sequences that are known to have the domain, presumably

from experimental results, and yet were not found by the domain representation and search

algorithm.

Highlight 3.2

PROSITE begins with a manual alignment of proteins identified as related

through similar sequence, structure, and function. A profile or expression pattern is gen-

erated that is used to classify new sequences as containing similar or dissimilar

subsequences.

(a) According to PROSITE record PS00109, protein tyrosine kinases have an active

site defined by the pattern [LIVMFYC]-x-[HY]-x-D-[LIVMFY]-[RSTAC]-x(2)-

N-[LIVMFYC](3). The signature is read as either LIVMFY or C is the first

residue, followed by any residue (x), then D, any one of LIVMF or Y, any one

of RSTAC followed by any two residues, a single N, and any one of LIVMFYC

three times (Highlight Fig. 3.2.1a).

PROSITE refers to patterns capable of findingmatches to the family-domain as

a signature. The signature is used to search theUniProt/SwissProt database.Based
on the number of false positives retrieved it is either deemed an appropriate core

signature or expanded in length to decrease the number of false positives identified

(PROSITE: http://expasy).

(b) A list of proteins identified from a search of the Swiss-Prot database as having

the tyrosine kinase pattern are noted in the PROSITE record (Highlight

Fig. 3.2.1b).

(c) Domain records are annotated with the results of sequence database searches.

The results are organized into lists positive, false positive, potential, and false

negative sequences (Highlight Fig. 3.2.1c).
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A uniform distribution of sequence scores in the database is one reason for obtaining

false positives or negatives. The cutoff value for inclusion is one point within the distri-

bution of sequence scores in the database. When the distribution of scores is not sharp

enough to distinguish between homologues and non-homologues, the cutoff threshold

may falsely include sequences. Match scores that fall within the “questionable” zone of

the distribution matrix are not clearly members or nonmembers. Pfam refers to matches

with such scores as potential hits. Potential hits are also created by a local match, only

part of the matrix aligned well to the sequence. Thus, potential hits indicate that a

domain may be present in the query sequence but the information is insufficient to

make a solid classification.

Highlight Figure 3.2.1
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3.3.6 Searching Family-Domain Databases

Most of the family-domain databases support searches for domain records by their data

fields: name, ID, or biological process. To find matches between a newly identified

sequence and existing families or domains requires comparing the sequence to the

family or domain library within the database. In order to analyze a sequence for the pre-

sence of already defined domains, we use the sequence as a query. Because each database

implements its own variation of domain definition, representation, and search method,

different and often complementary predictions for the presence of domains can be pro-

duced. It is ideal to query multiple databases to determine if a domain is predicted

within one’s sequence.

InterPro, a web-based database, was designed to integrate data from complementary

databases in order to fully annotate protein families and domains. It obtains data

from major family and domain databases including ProDom, Pfam, SMART, SUPER-

FAMILY, TIGRfam, PIR, PROSITE, and PRINTS (Mulder et al., 2005). Thus, multiple

analyses can be performed with a single sequence search that returns domain

match scores from the multiple databases (Fig. 3.6). When matches are found, InterPro

identifies the domain along with the databases that provide the predicted match. Also pro-

vided are the amino acid range that contains the match, the score of the match, and an

assignment of whether the domain is considered true, a partial match, unknown, or a

false positive. The classifications of true, partial, and unknown matches are assigned by

the contributing databases. False positive is a curated designation given by InterPro to

contributions.

InterPro shows the e-value for sequences classified as true hits. Two e-values are pro-

vided, one for the domain and the other for the sequence. For proteins with a single

domain, the e-values are identical. When a sequence has multiple domains, the e-value

for the sequence is either the sum (Pfam) or product (PRINTS) of the e-values for the

motifs (Karlin and Altschul, 1990). Thus, a protein with multiple domains or motifs in

Pfam or PRINTS may have high e-values despite statistically significant individual

domain matches.

Information regarding potential or overlapping matches within the query sequence

must be found at the individual databases. For example, at PROSITE and Pfam we can

obtain information on putative domains. SMART results in InterPro are displayed to

users as a set of non-conflicting domains with high scores. Within SMART, low scoring

domains and “Hidden” domains that overlap with higher scoring domains can be found.

Similarly, contextual domains are shown at Pfam but not in InterPro. Contextual

domains whose match score falls below the gathering cutoff but are still considered a

match because of the presence of other domains in the sequence are visible at Pfam.

To validate and provide additional evidence for predicted domain or family resem-

blances, control procedures are performed. (1) We can isolate and re-run the sequence

of the match region against the databases. If the matched region contains a domain, a posi-

tive and similar result is expected when the sequence has been removed from the other

amino acids. (2) We choose a known member of the family and do reverse search for

our sequence. If the sequence is a member of the protein family, a family member

should be able to retrieve the sequence from the sequence database or from a sequence

record within the family-domain database. (3) Use a shuffled version of the sequence as

a negative control. Presumably a sequence of the same composition but random order

will not retain the domain characteristics. If the same match is obtained, it suggests the
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match is due to a biased composition. Nonetheless, the searches result in computational

predictions based on families and domains reduced to defining characteristics, sequence

or structure. These features may be found in proteins in which they are not functional

as domains. Unless experimental evidence confirms the presence of the domain, the

domain is only predicted.

Figure 3.6 (a) Ensembl and (b) InterPro predicted domain matches from the same query sequence

search against the integrated databases. The databases within Ensembl and InterPro are shown to

the left with match results on the right. The display of multiple results makes apparent that the domains

predicted by one database differ from those predicted by another. It is important to have multiple ana-

lyses of your sequence. Two independent methods of identifying the same domain is stronger evidence

for the domain being present within the sequence than any single database prediction.
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3.4 CONCLUSION

The conservation of protein function occurs both at the level of structure and sequence.

The globin family is the classic example of a family of proteins whose structure is

highly conserved while the sequences are very divergent. At the other end of the spectrum,

serine/threonine kinase motifs are conserved in sequence and function. The pairwise

sequence similarity searches employed at sequence databases were insufficient to routi-

nely find with confidence short, highly conserved sequences, consensus patterns or struc-

turally conserved domains dispersed throughout the highly populated sequence databases.

Bioinformaticians have improved our ability to detect family and domain members by

reducing the overall search space for sequences and utilizing formal definitions for

families and domains.

The use of family-domain databases increases specificity and sensitivity for family

members and protein domains. This is achieved in part because the dedicated family-

domain databases decrease the overall search space for related sequences. Fewer

sequences and residues in the database decrease the likelihood of random matches due

to the size of the database. The ability to detect distantly related sequences was enhanced

through improved multiple sequent alignment algorithms, the development of position

specific scoring matrices and use of hidden markov models. These advancements

provide both more specific and more sensitive searches for families and domains.

By taking into account the focus of a database (family or domain), how the represen-

tations are created (consensus, pattern or profile) and the manner in which the results

are returned (all matches, potential matches, etc.), it is possible to create informative

searches for known and putative protein functions. The BLOCKS database identifies

highly conserved domains. SMART classifies and catalogues multi-domain signaling

molecules. PRINTS and PROSITE contain family descriptions that encompass entire

sequences. Pfam focuses on families as defined by domains and hidden Markov models.

The integrated databases, InterPro and Ensemble, increase the number of possible

family and domain matches returned because they query multiple databases in one

search. Regardless of whether your matches are returned from searching a single or mul-

tiple databases, the evidence is inferred functionality based on family-domain sequence

and structures. These suggested functions can then be explored and tested experimentally.
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Chapter 4
Getting Started: Modeling

In the next few chapters, we look at models designed to examine the dynamics of

biological systems; the changes of the system over time. To some, dynamics may be an

obvious domain for models that use continuous time and differential equations. It might

be less obvious that discrete models that are stochastic or Boolean in nature may also

be used. We focus on the continuous models because the language of change over time

and rates is familiar to those of us who have performed temporal studies of our biological

topic of interest. In many ways, the next chapters are intended to advance our current

understanding of dynamics by introducing new concepts without requiring the acquisition

of a whole field of knowledge. With that said, this chapter is an introduction to aspects of

numerical modeling with ordinary differential equations. It is meant to be a primer that

establishes an intuitive understanding that the following three chapters build on.

The use of mathematical models to explore biological phenomena is conceptually

similar to the use of model organisms—Xenopus, Drosophila, zebra fish, yeast, cell

cultures—for experimental research. Model organisms are chosen in order to facilitate

discovery of factors and mechanisms that we believe can be applicable beyond the specific

organism. We do not expect the results of the studies done in model organisms to exactly

reproduce processes in other organisms or cell types. Rather, we look to identify a set of

conditions, interacting factors, and organization that reproduce the analogous behavior.

The research design often requires simplifications and approximations to be made

(Wilmsatt and Schank, 2001). The research design and experimental conditions determine

how broadly the results can be interpreted or applied. Experimental conditions are varied

in order to determine the underlying structure of the system and its behavior. The same is

true of mathematical models.

When modeling biological systems, whether the system is metabolism, transcription,

translation, or vesicular transport, the same general cycle of steps are taken (Bower and
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Bolouri, 2001) (Fig. 4.1). The first step is familiar to biologists and that is the development

of the noncomputational or calculation-independent model (Gibson and Mjolson, 2001).

This involves creating a concept map that embodies your understanding of the molecular

components and processes involved in the biological system. The remaining steps deal

with creating the mathematical and computational model, steps commonly performed

by computational scientists, modelers, applied mathematicians, or statisticians.

The modeling process that we go through in this book involves making a concept map

of your biological system, a set of system statements, symbolic substitutions within model

and system statements, creating a list of ordinary differential equations (ODEs), and

choosing kinetic models for the reaction mechanisms of the cellular processes. The com-

putational steps are the entering of model components (variables, reactions, rate equations)

into a simulation tool and the setting up of simulation parameters (tasks, methods) simu-

lating and visualizing results.

The purpose of one’s model guides one’s selection of factors, biochemical reactions,

and cellular processes included in a conceptual map. These choices then dictate what is

possible to explore in the model. The appropriateness of a model will depend on what

aspect of the biological phenomenon one is interested in. For example in cell cycle

models, if one is interested in the effect of phosphorylation by the cell cycle kinase

cdc2 on the kinetics of cell cycle progression, a model that only grossly depicts activation

and inactivation of M-phase promoting factor (MPF) would be insufficient. Conversely, if

one’s focus requires knowing solely that MPF is activated, the detailed dynamics of the

binding rates of cdc2 and cyclin may be more cumbersome than helpful (see Chapter 6).

The models in this book are mathematical models described with a system of ordinary

differential equations and simulated by providing numerical values. Ordinary differential

Figure 4.1 The schematic shows a research cycle with steps common to biologists in circles, and steps

performed by computational scientists, modelers, and applied mathematicians/statisticians in

pentagons.
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equations are constructed based on our conceptual and theoretical model of the inter-

actions responsible for the cellular behavior of interest. In the next pages, we walk

through each step of creating a mathematical model in order to highlight the process.

We use the same steps in the subsequent chapters in which the focus is on modeling par-

ticular cellular processes and introducing simulation tools that are publicly available.

4.1 CREATING A NONCOMPUTATIONAL MODEL

The noncomputational model answers the questions:

1. What are the biochemical reactions to be modeled?

2. What are the kinetics of the system and reactions?

3. What are the parameters and initial conditions for the system?

These questions are answered with data from one’s experiments and the literature with the

limiting assumptions one makes based on one’s hypothesis and purpose for the model.

4.1.1 What Are the Biochemical Reactions to be Modeled? From
Diagrams to Reaction Maps

What are the biochemical reactions? The first steps of creating a model involve identifying

exactly what is being modeled. Concept maps in the context of modeling are the schematic

or diagrammatic representation of the components and interactions that will be modeled

mathematically. We often use diagrams to illustrate the current state of understanding

rather than try to use our linear language to describe the nonlinear nature of pathways

and process. These diagrams draw components and their interactions to illustrate the struc-

ture and directionality of the pathway or biological phenomenon.

Concept maps contain information on the components (i.e., sugars, proteins, enzymes,

lipids, metabolites); the flow of mass (i.e., biochemical reactions and membrane

transport); and modulators of the flow (i.e., cofactors or catalysts). For example, in

the diagram of glycolysis (Fig. 4.2), we can see that the pathway components include

10 carbon-based sugar molecules, 10 enzymes, and 2 types of carrier molecules. The

mass—carbon molecules—flows from glucose through a series of intermediates to

become pyruvate.

Developing a noncomputational model involves creating and moving between sets of

representations, from diagrams to maps and then to mathematical descriptions. The concep-

tual models developed by cell biologists have common notation—arrows for processes,

circles for small molecules, rod structures for receptors in membranes, and so forth. The

increased use of commercial products with image-based vocabularies is also contributing

to common image-based notation of pathways. However, there is no agreed upon standard

for schematic representation of molecular interactions. In contrast, biochemical notation has

a standard form for defining biochemical reaction maps. By using biochemical notation stan-

dards to create an interaction map, we move one step closer to the mathematical model.

We can redraw reactions from diagrams into a more standard biochemical form

(Fig. 4.3). To transition from common biological representations to mathematical ones

in the diagram, we assign each molecule acting as substrate, product, or cofactor a
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Figure 4.2 Schematic of the glycolytic pathway using familiar biological terminology and conventional

biochemical structure drawing.
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symbol (e.g., X or S ). The arrow represents a specific reaction and its associated

velocity (V). Each drawing is a representation of the same biological process. Both rep-

resentations convey something different, and each is “correct” or appropriate for its audi-

ence. However, for biologists, the representations with names of the metabolites and

enzymes may seem more informative because they provide terminology that allows

for researchers to draw on knowledge about the molecule that is not explicitly presented

in the diagram. In contrast, a symbol’s meaning comes solely from the context of the

flowchart. Making our biological maps and diagrams use conventional and uniform

mathematical symbols brings us a step closer to the conversion of a biological

diagram to a mathematical representation.

In a number of modeling articles, the authors refer to a set of system statements that

are the basis for their mathematical models. A system statement says what is happening.

For example, “Glucose is converted to glucose 6-phosphate” is a system statement. Well-

written system statements provide sufficient information to appropriately construct either

the concept map or a set of ordinary differential equations. We can use our diagrams and

biochemical reaction map as guides for writing system statements and differential

equations for the model. Each process in the model is written as a statement. The reac-

tion map and sentences can in turn be translated into mathematical statements by substi-

tuting symbols and signs appropriately. In the case of glycolysis (Fig. 4.3), the map

indicates that glucose 6-phosphate (S2) is produced by the phosphorylation of glucose

(v1), and it is removed by its conversion to fructose 6-phosphate (v2). This is the

system statement. It defines how a variable changes in relation to other processes in

the model.

Figure 4.3 Translating representations. A simple series of biochemical reactions can be described by a

system statement, biochemical reaction diagram, or mathematical statement. (a) A system statement

and biochemical reaction diagram of the processes including a simple subtraction statement for deter-

mining the amount of glucose 6-phospate for a single point in time. The same biochemical reactions,

glucose conversion to glucose 6-phosphate and glucose 6-phosphate conversion to fructose

6-phosphate, are shown. (b) The process described in terms of rates of change and with substitution

of biochemical notation in the biochemical map for chemical structure drawings. The differential equation

and the governing rate equations are shown below.
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4.1.2 What Are the Kinetics? Rate Equations

There are two sets of equations that are developed for our math models: a set of differential

equations to describe the system behavior (system equations) and the set of algebraic

equations used to describe the rates of change of specific variables (rate laws). The

system statement and reaction map can be used to guide writing the differential equation.

For the rate of change of glucose 6-phosphate, the ODE is

dS2

dt
¼ v1 � v2

This is a shortcut for writing differential equations from concept maps and system state-

ments. It is not the formal description of constructing ordinary differential equations.

If we modify our model of glucose 6-phosphate (S2) production to include conversion

of fructose 6-phosphate back to glucose 6-phosphate (v3), the differential equation would

be written as

dS2

dt
¼ v1 � (v2 þ v3)

The set of ordinary differential equations are fully described when the velocities are

assigned rate equations that define how the process occurs over time. Typically, the rate

equations are algebraic equations of familiar enzymatic rate laws. Enzyme kinetics are

themselves mathematical models of the behavior of the reaction. The models in the follow-

ing chapters involve mass action kinetics, exponential decay, and Michaelis-Menten and

Hill-type kinetics.

Because the rate equations govern the behavior of the reactions within the model, it is

worth taking time to examine the kinetic models that will be used in the following chapter.

These are kinetic models that are commonly discussed in biochemistry courses. Readers

who have a good understanding of how reaction processes are described with kinetic

models may wish to skip to the section on parameter values and implementing the

computational models.

4.1.2.1 Kinetic Models The factors of our biological system are represented as vari-

ables and rate equations in our mathematical model. Metabolites, proteins, and ions that

are the substrates and products of reactions are variables. These are the molecules to

which we assigned the notation of X or S. The variables represent concentrations of mol-

ecules that will change over time. Enzymes are included explicitly as variables only when

their concentrations change over time. For the models in this book, we assume that the

amount of enzyme does not change during the course of the simulation. Given this, the

enzymes and reaction mechanisms are implicitly represented as rate equations.

Rate equations are a symbolic representation for the way a variable changes over time

(Fig. 4.4). The law of mass action refers to a process being directly proportional to the

Highlight 4.1

When in doubt, assume enzyme concentrations are constant. This simplifies rate

equations and makes it possible to use conventional enzyme kinetic models.

62 GETTING STARTED: MODELING

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


concentration of the variable. Proportionality in general for two variables is written in the

form y ¼ kS, and k is the proportionality constant. Similarly, mass action rate equations are

written as a rate constant (k) times the concentration of the substrate (S ). They hypothesize

that the rate of change, commonly denoted as velocity (v), in the variable (S ) is pro-

portional to the concentration of substrate and a rate constant (k). Mass action rate

equations can also be written for processes involving more than one substrate (Table 4.1).

Chemical notation: S-.

v ¼ �kS (4:1)

dS

dt
¼ �kS (4:2)

Mass action kinetics are appropriate when the process is mediated by an unregulated

enzyme or an enzyme unlikely to be saturated, such as when the velocity of the reactions

are linear. To calculate the rate constant from experimental data, we plot the velocity

against concentration on a graph. Assuming the data creates a straight line, we determine

TABLE 4.1 Mass Action Rate Equations for Biochemical Reactions

Reaction Mass Action Equation Unit of Rate Constant (k)

-. k mM/s

S-. kS s21

S1þ S2-. kS1 � S2 s21
� mM21

Figure 4.4 (a) Constant, (b) linear, and (c) exponential behaviors for the amounts of variables with

respect to time are shown as graphs. (d) Relationships between the qualitative behaviors of the vari-

ables, rate of change, and symbolic representations of the rates are listed across the table rows.
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the slope, which is equivalent to the rate constant. The change in concentration of the

substrate over time for reactions with a linear rate equation is an exponential.

Mass action is appropriate for describing enzyme-catalyzed reactions when the velocity

of the reaction is proportional to the substrate concentration. However, not all reactions

have a linear relationship between substrate and rates of change as modeled by mass

action kinetics. As well, we may want to study reactions near saturating conditions,

which requires different kinetic models. More complex models of enzyme kinetics

provide us with rate equations that can describe reactions in saturated conditions or invol-

ving more than one molecular interaction.

The Michaelis-Menten kinetic model is able to describe the behavior of enzymes when

concentrations of substrate are very low or saturating. Michaelis-Menten takes the form:

Vmax � S

Km þ S
(4:3)

Vmax is the maximum rate of the reaction, which is reached at saturating concentrations of

substrate. Km is the substrate concentration at which the reaction is at half its maximal

velocity. This model can be reduced to mass action kinetics when the enzyme is unsaturated

and the process is irreversible. How is this possible? In cases when substrate concentration

(S) is small in relation toKm, the system is unsaturated and we assume that its contribution is

insignificant in relation to the much larger value ofKm. The formula can thus be rewritten as:

Vmax � S

Km

(4:4)

Vmax

Km

¼ k (4:5)

k � S (4:6)

Substituting Eq. (4.5) within Eq. (4.4) gives us the notation for mass action kinetics

[Eq. (4.6)].

The two parameters used in the Michaelis-Menten rate equation are the Vmax of the

enzyme and the Michaelis constant, Km. These values can be determined through

in vitro studies in which the enzyme concentrations are held constant and the substrate

concentration varied (Stryer et al., 2002). By varying the concentration of substrate, we

are able to determine the maximum velocity for the reaction (Vmax) as well as the concen-

tration of substrate at which the reaction occurs at half its maximal speed (Km). These

parameters are properties of the enzymes.

Hill type kinetics [Eq. (4.7)] are used when the enzyme, pump, or channel displays

cooperative behavior, present in multimeric proteins (e.g., hemoglobin, inositol

Highlight 4.2

Unregulated enzymes are unlikely to be saturated and can be modeled as a fixed rate

constant.
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triphosphate receptor) (Hill, 1910). The original Hill equation described the fraction of

sites on a multimeric protein occupied the substrate, given that when the substrate binds

to one site it has a positive or negative affect on the binding of subsequent substrate.

The Hill coefficient is a term introduced to account for the nonproportional effect of

substrate binding on the rate of the reaction. The Hill coefficient (n) is calculated from

the experimental data. Positive Hill coefficients reflect an increased enzymatic activity

in relation to substrate binding, whereas a negative coefficient represents negative

cooperativity.

Vmax � ½S�
n

½S�n þ Kn
d

(4:7)

4.1.3 What Are the Parameters and Initial Conditions?

Parameters (i.e., Km, k, Vmax, etc.) are essential values for modeling dynamic processes.

Each rate law used to describe how a biochemical reaction or process occurs contains a

rate constant or parameter. What are parameters? They are properties associated with

the enzyme or biological process and are derived by fitting experimental data to a math-

ematical model. Parameters include the enzymatic rate constants and system parameters

(e.g., conserved mass of adenosine phosphate) that do not change during the simulation

but are required to accurately describe the dynamic behavior of a biological process.

The set of parameter values in a given model are often pieced together from different

literature reports created by different labs. Even when two labs are characterizing the

same enzyme or biological process, variation exists within the parameter values due to

differences in conditions under which they were measured, temperature, pressure, and sub-

strate or enzyme concentrations. In many cases, some rate values are known and others are

not. In addition to primary literature, parameter values for reactions are being gathered and

curated in Web-accessible databases such as Brenda, SigPath, and ProcessDB (Table 4.2).

It is not always possible because of unfeasible experiments or lack of data in the litera-

ture to obtain a specific rate for one’s process of interest. In these cases, an initial esti-

mation is to assume that the Km is approximately equal to the in vivo concentration of

the substrate. Why? The cell is rarely in a saturated state or far from equilibrium. This

suggests that the process occurs within a substrate concentration range in which the rate

TABLE 4.2 Database Sources for Parameter Values

Database Web Site

BRENDA http://www.brenda.uni-koeln.de

SigPath http://icb.med.cornell.edu/crt/SigPath/index.xml

ProcessDB http://www.integrativebioinformatics.com/processdb.html

Highlight 4.3

Identify a small set of parameters for your system based on experiments or literature.

4.1 CREATING A NONCOMPUTATIONAL MODEL 65

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


of production is responsive to the addition or removal of substrate. This occurs when

reactions are at their Km, they are at half their maximum velocity. This is the linear

portion of a reaction that is plotted as velocity ( y-axis) versus substrate (x-axis).

Even with highly characterized systems, parameter values may be missing. This creates

an opportunity for mathematical modelers to estimate values (Zwolak et al., 2005) and for

experimentalists to determine them experimentally. Microscopic techniques have been

used to determine rates of diffusion, complex formation, and vesicle trafficking

(Lippincott-Schwartz et al., 2001). Additionally, radioactively tagged ions have been

used to monitor rates of molecule transport by channels or pumps (Lippincott-Schwartz

et al., 2001). The aforementioned methods commonly have the advantage of being used

with live cells and can obtain fairly high resolutions that lend themselves to kinetic

studies. Parameters can also be obtained from samples fixed over a time course, which

allows us to graph the change of a variable over time. In the subsequent chapters, we

make use of the kinetic models and parameters developed by biochemists and used in

existing computational models.

4.1.3.1 Initial Conditions of Variables Initial conditions—parameter values and

variable concentrations—are the final pieces of information about our biological

systems needed to implement our mathematical model as a computational model. We

addressed obtaining parameter values above.

In mathematical models, we consider two main types of variables: dependent and inde-

pendent. In our models, both molecular concentrations and time change, both are vari-

ables. However, time proceeds whether or not there is a change in substance. Time is

an independent variable. In contrast, if there is no change in time, there is no change in

the concentration of the molecule. Change in the concentration of molecules is dependent

on time. These are the factors in our model that we denoted as an X or S.

The variables that change in relation to time during the simulation are referred to in

modeling literature as system variables, state variables, or dependent variables. Each is

useful for highlighting the variable’s relationship to the model. A system variable varies

within the system of equations. State variable: calcium exists in two states, bound and

unbound. Dependent variable: the change of S is dependent on change in time. Time

and space are typically, but not exclusively, independent variables.

In the following chapters, calcium, glucose, and MPF are dependent variables in the

models being discussed. Calcium and MPF exist in more than one state. The multiple

calcium states are due to its distinct cellular locations. Cytosolic calcium is a different

state than calcium in the endoplasmic reticulum (ER), and bound calcium is distinct

from free calcium. MPF is both active and inactive. Each variable state participates in a

separate set of reactions. We will monitor how each state variable, which correspond to

molecular states, changes through the course of a simulation.

Although concentrations for molecules may vary in cells based on the cellular state

(quiescent, proliferating, differentiated, progenitor, etc.), one concentration value must

Highlight 4.4

Km of an enzyme that shows saturation kinetics is assumed to be close to the

concentration of the substrate in vivo.
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be assigned to the variables to run a simulation. Based on our understanding of the biology

and biochemistry of the system, we can choose a range of values for a given variable that

encompasses the average concentration found in vivo. We subsequently examine how the

different concentrations affect the simulation. A simulation that looks reasonable for only

one concentration value is severely handicapped and unlikely to be representative of a rea-

listic scenario within a dynamic cell.

Detail 4.1
Determine sensitivity of the model to parameters by incrementing up and down from the

initial value. Use automated or semiautomated scanning parameter functions when

available.

Initial concentrations are simultaneously significant and immaterial. The behavior of

the models we create is governed by the ordinary or partial differential equations. Initial

concentrations tell the approximation process where to begin to determine a solution.

By definition in systems of ODEs and partial differential equations (PDEs), for each set

of initial conditions there is a unique and consistent solution. This makes each concen-

tration significant. Yet, if we were to solve the equations symbolically, using only the

relationships defined in the rate equations and the system of ODEs, no specific number

value is given. Think of our enzyme kinetic models, which are symbolic representations

of the enzyme kinetics. We know that the plot of the velocity versus substrate concen-

tration of a Michaelis-Menten model will create a hyperbolic curve, even without plugging

in specific numbers. It is the parameter values and initial concentrations that add numerical

values to the graph, but it is the symbolic representation, the algebraic equation that gives

the curve its form.

4.2 COMPUTATIONAL MODEL: SIMULATION METHODS

In the chapters that follow, the software tools employed write and solve the differential

equations of the modeled system for us. It is important, however, to have an understanding

of what issues arise when differential equations are solved on a computer and to under-

stand the effect that the approximation method used to solve the equations has on

model results. These topics generally fall under computational science or simulation

methods. There are a number of texts dedicated to these topics or containing accessible

introductory chapters (Heath, 2001; Shiflet and Shiflet, 2006). We will discuss solving

differential equations briefly here to provide reference materials for the future chapters

and investigations.

4.2.1 ODE Essentials

We use ODEs to describe the change of variables in relation to time; rates of change. In

general, ODEs examine the change in a variable in relation to a single independent vari-

able. In our models, we use them to look at the change in dependent variables, MPF,

calcium, cyclin, and so forth, in relation to the independent variable of time. Differential

equations use the current state of the model—numerical values of the parameters and

concentrations—to determine the next state of the system. The reaction equations and
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ODEs govern the behavior of the system. Changing any given parameter or initial concen-

tration value creates a different system state that has its own unique solution. Numerical

integration methods (see text below) are used to obtain the solution to the ODEs that

govern the behavior of the model.

4.2.2 Approximation Methods and Time Steps

To solve the set of differential equations, numerical approaches are employed that approxi-

mate the solutions. In other words, we fully describe one set of initial conditions, concen-

trations at time zero, and approximate the solution of the differential equations that

governs the resultant behaviors. This is what is meant by numerical simulation. It is a

simulation in which specific values are provided for each variable and parameter in

order to solve the set of differential equations that describe the biological system.

We use simulation tools that have built-in approximation methods. Multiple numerical

integration methods have been developed (Table 4.3). A seemingly easy to understand

method of approximation is the Euler method. The Euler method is a finite difference

equation that resembles a simple subtraction or addition equation. It can be described as

stating, “What you have is equal to what you had plus what changed.”

The Euler method determines the specific value of what you have at any given time

through a series of time steps, delta t (Dt), of predetermined and fixed length (Fig. 4.5).

This is similar in some ways to a time series experiment in which samples are taken at a

set time interval (i.e., every 5 minutes) to determine the concentration of a variable (e.g.,

calcium, cyclin, etc.). The Euler method takes discrete steps of Dt in time and plugs the

existing variable concentrations back into the governing equations to calculate the next

set of concentrations. The size of time steps is critical to the final solution obtained.

4.2.2.1 Approximation Errors: Blowing Up and Rounding Off It is not needed

for us to become full experts in the methods of approximation. However, we do need to

have a qualitative understanding of the pitfalls and strengths associated with approxi-

mation methods. As well, we need to be able to identify the characteristics of a flawed

simulation due to the approximation method. There is an inherent limitation to numerical

approximations that must be taken into account, which is the error between the approxi-

mate solution and the exact solution of the differential equations. Again, Euler is a

great example. For each time step (Dt), there is a possible error that is equivalent to

Dt2. For fourth order Runge-Kutta, another method of approximating differential

equations, the equation for approximating the solution of the ODE is more complex,

but the error range is Dt5. Thus for a very small Dt, fourth order Runge-Kutta is less vul-

nerable to approximation errors than Euler. Other approximation methods employ a

TABLE 4.3 Numerical Integration Methods

Software Fixed Time Step Stella Gepasi Virtual Cell

Euler forward X X X X

Runge-Kutta 2 X X X X

Runge-Kutta 4 X X X X

Newton — — X —

Adams X — X X

BDF — — X —

LSODA — — X X
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variable time step such that the most appropriate time step to avoid approximation errors is

selected by the algorithm throughout the approximation.

This is particularly true for Euler and Runge-Kutta methods that use fixed time steps set

by the user to approximate solutions to the set of ODEs. If the time step is large relative to

the time it takes for biochemical reactions to occur within the simulation, the behavior is

erroneously described. In the hypothetical system of cell population growth (Fig. 4.5), we

have a cell population that has a flat rate of growth: 10 cells per day are produced. Cell

removal from the population is proportional to the number of cells in the population.

For this model, we have varied the rate constant for the removal of cells. The time step

chosen for the approximation with Euler method is 1 day. However, something unintuitive

occurs. When the rate constant is set to 5/day, we see sharp oscillations in the results

(Fig. 4.6). If we looked at the numbers, we would see that the system is varying sharply

between 20 and 0. The same system can be approximated with a time step of 0.25 or

0.125 days. The time step for the approximation is set by the modeler when using fixed

step methods such as Euler and Runge-Kutta. The smaller time step results in a smooth

curve for the model system.

Again, we can draw a parallel between experimental and simulation time series. The

biological behavior observed experimentally in a time series experiment can be dependent

on the interval of sampling. Smaller time intervals taken over the course of the biological

behavior provide a better overall understanding of the system. A general rule for selecting

time step size is to choose a Dt that is one over the smallest timescale. If the smallest time

constant is 10 seconds, the Dt would be 0.1 seconds.

Figure 4.5 Euler equation. The Euler equation is known as a finite difference equation. (a)We show the

equation of change in a cell population at one time (t), using mathematical notation and English. (b)

Population growth (S), whether cells, an enzyme or organism, is drawn in biochemical notation. (c)

The results of calculating the change in population based on the Euler equation with a Dt of 0.25 are

shown as a table. Replace the word population with S to obtain biochemical notation in table.
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A characteristic pattern of a model with an inappropriate step size or approxi-

mation method is when the graphed simulation results produce oscillations whose peak

values increase rapidly over time (Fig. 4.6). This is referred to as “blowing up.” When

variable values blow up, it is fairly certain that your method of approximation is not

working.

There are two approaches to determining whether one’s simulation has such sharp

oscillations or is blowing up. First, if one is using a fixed step method (Euler; Runge-

Kutta), vary the time step by a factor of 2 or 3. Second, choose another method to simulate

the model and again run two different time steps. When the same behavior is produced

with two time steps that differ by twofold and two different approximation methods,

one’s model and approximation methods are fine.

Figure 4.6 Erroneous behavior due to Dt approximation error. The conceptual diagram (drawn in

Stella) indicates a population that is fed by an input (v1) and removed by an output (v2). The input

occurs at a flat rate of 10/day. The output is proportional to the population (S). The plotted results

show the calculated growth of the population with different rate constants (1:0.5, 2:1, 3:5) and the

same Dt, 1. The behavior of the system is smooth except for the simulation with a rate constant of 5

and Dt of 1. Note the sharp oscillatory behavior. This behavior is obtained when Dt is relatively large

in relation to the overall rate of the simulated process. The same rate constant values simulated with

a Dt of 0.25 do not show this behavior.

Highlight 4.5

Start with a Dt to be 10-fold smaller than the smallest rate constant in the simulation.
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Detail 4.2
Try different step sizes and different approximation methods.

4.2.3 Simplifying the Set of ODEs

A common step taken in creating numerical models is the reduction of the number of

ODEs or parameters that need to be solved or provided, respectively. There are a few

common practices for achieving this: establishing algebraic relationships whenever pos-

sible by defining velocities or variables in terms of one another. An overly simplistic

example of decreasing the number of differential equations is the identification of

variables that are conserved in the system.

In Chapter 5, where we look at a model of glycolysis, the total amount of adenosine

nucleotides is conserved. Adenosine nucleotides (AT) are distributed between ATP (A3)

and ADP (A2), but the overall amount remains the same in the model.

AT ¼ A3 þ A2

Similarly in Chapter 6, the total amount of MPF is distributed between the two states of

active and inactive MPF:

MPFT ¼ aMPFþ iMPF

A set of variables may be converted to parameters when they exist as conserved mass in

the model. The concentrations of each variable (ATP, ADP) change in relation to each

other during the simulation but the total concentration (AT) is constant throughout the

simulation. The recognition of conserved variables enables us to solve for one variable

algebraically in terms of the other instead of using a differential equation.

A3 ¼ AT � A2

This removes the differential equation from the set of differential equations to be solved

and reduces the number of possible errors due to approximation.

Another common approach to reducing the mathematical complexity of a model is to

scale out a term such that the number of parameters required to solve the equation is

reduced. Scaling is one of those methods we learned early in our education where we

use a fraction equivalent to the value of 1 as a multiple to change the scale of a system

although the overall equation is not changed. Simple conversion examples are across

scales of concentration, size, or time: nano to micro (moles, meters, or seconds). It is

also possible to scale out units. When models are run in the absence of units, it is referred

to as dimensionless. These work on the same principle of scaling but find conversion

relationships within the model itself.

4.3 VISUALIZING AND ANALYZING SIMULATION RESULTS

An important aspect of analyzing your simulation data is having a well-organized format

for storing and organizing the results. The smallest computational model that we examine

contains five components and nine parameters. Although in the text we describe one set of

parameter values to examine as a case study, each parameter value can be changed to test

how the model behaves. If each parameter were tested in two conditions, there would be a

minimum of 29 (512) test results.
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The breadth of possible variations and quantity of data output are part of the amazing

strength of developing models. Simultaneously, it creates a wealth of data that can be as

daunting or uninformative as the biological system itself. For this reason, it is important to

both have an understanding of what one “expects” of the system, what relationships one

wants to examine, and the limitations of one’s model given the assumptions made

during its construction.

4.3.1 Steady-State Analysis

Another test for the stability of the model is to set the initial conditions for steady state

and run the simulation. Under these conditions, variable concentrations are not expected

to change as seen in Figure 4.7a. Although the variable concentrations do not change,

biochemical reactions are still occurring. S continues to be produced (v1) and removed

(v2) from the system such that the total amount of S converted by the reactions is not

constant but rather increases over time. The rates of S production and removal are

equivalent such that the concentration of S over time appears constant. The biological

system is in a dynamic equilibrium. When we run a steady-state simulation, we are

looking for the set of values that result in the change in variables over time being equiv-

alent to zero.

If a steady state is not reached when simulating a set of ODEs for a biological system

that is known to have a steady state, the equations do not accurately model the system. If

your system does not reach equilibrium, it may be that the parameter values are off; other

factors need to be taken into account either in the rate equations or as additional variables

within the model. Determining steady-state conditions makes it possible to change single

parameters and examine the impact of these parameters relative to the steady-state beha-

vior of the simulation. If the model is highly sensitive to parameter values, it is referred to

as a poorly conditioned system. A slight change in one numerical value causes the

system’s overall behavior to change drastically. The models we look at in this text are

well-conditioned systems.

What is the goal of the model? We will see in the following chapters that the model of

the cell cycle reproduces oscillation behaviors but is not exact in the timescale when com-

pared with experimental values. The model was used to examine the plausibility of gen-

erating oscillations, not the validation of particular experimental values. In contrast, in

Chapter 7, the experiments performed were used to determine factors contributing to

the production of experimental results. The temporal and quantitative changes in concen-

trations of variables are closely reproduced. The expected results of the two models are

quite different. In one case, we are looking in the graphs or tables for the presence of

an overall pattern; in the other case, quantitative values. It is up to the author of each

model to have an understanding of the types of results he or she is expecting.

Many software tools, differential equation solvers, have been developed for the analysis

of biochemical reactions and pathways that provide sets of predefined functions that are

commonly used by biochemists (Alves et al., 2006). We use these tools as simulators to

examine the behavior of the glycolytic pathway and calcium dynamics. We use a

general simulator, Stella, to examine the cell cycle. Other simulators such as MATLAB

and Mathematica have greater capacity to handle complex models and solve analytical,

nonnumerical, models. These tools are nonspecialized in that they are used in many dis-

ciplines. We have chosen to introduce a new tool in each chapter. The goal of the chapters

is to introduce both the construction of the model and the simulation tool.
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Each tool has a different user interface design and functionalities. The tools have easy

to understand user interfaces. All of the tools provide simple graphing tools that allow us to

view the results as a 2D plot. The software tools with which we will be working vary in the

amount of data storage provided, the form of data presentation, and tools for analysis. The

simplest form of data is the generation of files either as comma delimited files (Gepasi) or

table format (Stella). Virtual Cell supports visualization of temporal data in 2D and 3D

Figure 4.7 Steady state. (a) Simple model consisting of two reactions, v1 and v2, created in Stella.

(b) Graph of the total mass converted by the reactions over time (1) and changes in the amount of S

over time (2). Although the amount of S is constant, the amount of product created over time increases.

(c) The rates for each process (v1 and v2) are equivalent.
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spatial models (geometries). As one develops his or her own models and obtains a better

understanding of his or her computational needs, one may wish to explore additional tools.
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Chapter 5
Modeling Metabolism

The term metabolic modeling has been used to refer to two very different research goals

that involve metabolic pathways. One goal, common to databases such as BioCyc, KEGG,

and Ligand, is the ability to determine the factors and topology (layout or structure) of a

metabolic pathway. These databases elucidate which possible genes and proteins are

involved in any given set of reactions. The sites use computational approaches to generate

a probable or existing metabolic pathway from genomic, RNA expression, and protein

interaction data.

Metabolic modeling is also used to refer to creating quantitative models of specific

reactions within metabolic networks. These models may be used to predict the behavior

of already identified reactions, discover discrepancies between the behaviors of a proposed

mechanism and the experimental biological system, to test perturbations of mechanistic

explanations, and to better understand the biology of the overall network. In this

chapter, we examine the latter case—modeling kinetic reactions in metabolic pathways.

We will focus first on defining the topology of the metabolic pathway (glycolysis),

defining the involved components, and writing symbolic representations (see Chapter 4).

This will create a noncomputational model. We then focus on developing mathematical

descriptions and using a software package, Gepasi, to examine the kinetics of the pathways.

Gepasi has been developed for the analysis of biochemical reactions and pathways and

therefore provides sets of predefined functions that are commonly used by biochemists.

We are using the tool as a general simulator to examine the behavior of the glycolytic

pathway and therefore will not be discussing the functions of metabolic control analysis,

optimization, or fitting that can be performed with Gepasi.
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5.1 CREATING A NONCOMPUTATIONAL GLYCOLYSIS MODEL

For this chapter on metabolism, we are using glycolysis to become familiar with creating a

model and implementing kinetic simulation models. Glycolysis is one of the first bio-

chemical and metabolic pathways learned by biology students. This is a series of bio-

chemical interactions that break down glucose to produce pyruvate, ethanol, ATP, and

NADH. A diagram of this pathway is shown in Figure 5.1. The diagram provides us

with a map that we can interpret better than we can describe.

Developing our noncomputational model involves creating and moving between one set

of representations to another, from diagrams to maps and then to mathematical descriptions.

This is done by addressing the following questions in the context of a research hypothesis:

1. What are the chemical reactions to be modeled?

2. What are the kinetics of the system and reactions?

3. What are the parameters and initial conditions for the system?

5.1.1 Yeast Glycolysis and Oscillations

Scientists have made computational models of glycolysis to examine the kinetics and

mechanisms of glycolysis and glycolytic oscillations in yeast (Richter 1974; Richter

et al., 1975; Bier et al., 1996; Hynne et al., 2001). Glycolytic oscillation refers to the

concentrations of metabolites in the pathway rising and falling with an observable fre-

quency, amplitude, and phase. Glycolytic oscillations in yeast are dependent on rate of

glucose addition, pH, temperature, and protein concentration (Richard, 2003; Poulsen,

2004). Oscillations are most obvious at a macroscopic level, i.e. when they are synchro-

nized in the yeast cell population (Das and Busse, 1985; Richard, 2003). Oscillations

occur within individual cells (microscopic) and are required for macroscopic oscillations

(Aon et al., 1992; Poulsen, 2004). Oscillations can be found in yeast under aerobic and

anaerobic conditions in extracts and intact yeast (Chance et al., 1964a, b; Ghosh and

Chance, 1964; Hess and Boiteux, 1968; Richard et al., 1993; Richard, 2003; Poulsen

et al., 2004).

Why is this particular aspect of biology of interest? One reason is that this biochemical

network stays predominately at steady state. It is difficult, therefore, to differentiate

degrees of control that each intermediate step has on the system (Olivier and Snoep,

2004). When the system is perturbed into an oscillating state, it is easier to examine the

influence of each step on the phase, frequency, or amplitude of the system’s behavior.

Yeast glycolytic oscillations have been a biological model system for understanding

control of steady-state metabolic processes, developing new theoretical methods for ana-

lyzing oscillatory systems, and studying intercellular communication (Goldbeter and

Lefever, 1972; Bier et al., 1996; Bier et al., 2000; Reijenga, 2001). In this chapter, we

look at glycolytic oscillations to obtain a better understanding of the mechanisms that

maintain microscopic oscillations within the glycolytic pathway. The models we re-create

based on Wolf et al. (2000) investigate the hypothesis that oscillations in ATP are suffi-

cient to maintain oscillations within the glycolytic pathway and NADH when oscillations

in particular sugar metabolites in the pathway backbone are absent. As we will refer to the

paper by Wolf et al. (2000) frequently throughout our discussion of metabolic modeling,

unless otherwise indicated, “Wolf” references this particular paper.
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Figure 5.1 Diagram of glycolysis reaction pathway. The diagram provides both graphical and textual

representations for sugars and coenzymes. Text is used to provide names and graphics to identify

sugar metabolites. Arrows indicate the flow and direction of mass through the reactions.
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Glycolytic oscillations can be observed in intact cells indirectly by measuring

fluorescent absorption by NADH or directly by measuring concentrations of metabolites

including NADH over time (de Koning and van Dam, 1992; Richard et al., 1993).

Richard et al. (1996a), used the latter procedure to investigate mechanisms for macro-

scopic oscillations. In these experiments, they detected oscillations in the concentrations

of the first three metabolites, glucose 6-phosphate, fructose 6-phosphate, and fructose

1,6-bisphosphate, but none of the subsequent sugar metabolites. This finding differed

from previous reports on transient oscillations in yeast extracts in which the concentrations

of the downstream three-carbon sugars also oscillated (Betz and Chance, 1965). It was also

surprising given NAD reduction and NADH oxidation occur in the reactions producing

nonoscillating sugars. Richard et al. (1994, 1996) proposed that ATP hydrolysis and oscil-

lations linked through the glyceraldehydes 3-phosphate dehydrogenase reaction were

sufficient for driving and sustaining oscillations within the cells in the absence of oscil-

lations in three-carbon metabolites (Richard et al., 1996). “Richard” shall refer to the

paper by Richard et al. (1996) throughout the rest of this chapter.

Wolf created a minimum model of glycolysis to explore whether NADH oscillations

could occur in the absence of downstream oscillations and therefore, as proposed by

Richard, it was plausible that energy carriers were the mechanism of propagating oscil-

lations through the metabolic pathway. The model was not used as a predictive or quan-

titative tool. In other words, the simulation results were not expected to quantitatively

match the concentration values observed experimentally. Rather, the model qualitatively

reproduces behaviors of the anaerobic system.

The model is based on what is known about the biology—rate constants and enzyme

kinetics of reactions under anaerobic conditions—and acceptable assumptions (equilibrium

states). Wolf evaluated the accuracy of the model in relation to the relative amplitudes and

phases found by Richard’s experiments in which,

1. ATP/ADP oscillations are greater than NADH/NAD oscillations.

2. Relative amplitudes of upstream sugars are smaller than downstream oscillations.

3. Relative amplitude of ATP/ADP are greater than downstream oscillations.

5.1.1.1 What Are the Chemical Reactions? To see the choices made by Wolf in

creating this model, it is helpful to compare the created model structure to what is known

about the pathway. To do this we will use the Kyoto Encyclopedia of Genes and Genomes,

or KEGG (Kanehisa, 1997; Ogata et al., 1999; Kanehisa and Goto, 2000; Kanehisa et al.,

2006; available at http://www.genome.ad.jp/kegg/) database as a baseline set of known
reactions. Although many biologists are familiar with the glycolysis pathway, one might

use a metabolic pathway database such as KEGG as a reference (Fig. 5.2) to make a list of

pathway reactions and associated enzymes specific to yeast (Table 5.1).

Detail 5.1
KEGG is a database of known and predicted pathways. BioCyc is another metabolic

pathway database that could be used. Both databases include information on newly

identified genes and therefore are not always accurate. However, the glycolysis

pathway in yeast is well documented, and little error is expected. The pathway can

be compared with that in BioCyc as a method of confirmation.
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Figure 5.2 Modified KEGG pathway map of glycolysis. The Kyoto Encyclopedia of Genes and Gen-

omes (KEGG) contains graphical maps of the pathway of glycolysis. The pathway provided in KEGG

contains greater detail than is presented here. The image shown allows us to identify the sugars and

enzymes involved in the glycolytic pathway for Saccharomyces cerevisiae.
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If we compare the set of reactions from KEGG and the Wolf model (Fig. 5.3), we can

see that the number of reactions drawn for Wolf are fewer than those drawn for KEGG.

Wolf created “lumped” reactions that coupled reactions mediated by hexokinase and

phosphofructokinase into one (v1, Fig. 5.3). Additional lumped reactions combined phos-

phoglycerate mutase enolase, and pyruvate kinase reactions into one (v4), and all

intermediate glycerol-producing steps were reduced to one reaction. Lumped reactions

effectively treat a number of reactions as a single reaction by defining them under

conditions in which they are equivalent or by describing one reaction in terms of

another. In the case of hexokinase and phosphofructokinase, the end products of both

hexo- and phosphofructokinase are considered to be at equilibrium and the enzymes insensi-

tive to product concentration (Heinrich and Rapoport, 1975; Teusink andWesterhoff, 2000).

The conditions used to create the lumped reaction are described in themethods of the original

paper. The simplifications effectively reduced the number of variables used in the

calculations.

Related to the question of “What are the chemical reactions?” is the question “What

are the components: metabolites, enzymes or cofactors?” We take the components

directly from the list of reactions to generate a reference for symbols that we will use

through the remainder of the tables and figures (Table 5.2). If reactions were written

without explicitly identifying cofactors that we wish to account for in the model, we

add them to this list. Because we are examining the role of ATP/ADP and NADH/
NAD levels in glycolytic oscillations, they are important components to include. We

will not monitor the concentrations of glycerol and ethanol. They serve as molecular

sinks for mass moving through the pathway. Their inclusion in the concept map helps

us to think about the entire pathway and reactions, but no reactions use these molecules

as a substrate.

We arrange the components and interactions into a “flow” map (Fig. 5.4). This map

looks very much like Figure 5.3. Drawing the map in “proper” biochemical notation

(Voit and Ferreira, 2000) will facilitate our developing the mathematical equations that

describe the relationships in the pathway map.

TABLE 5.1 Information Derived from KEGG Pathway Diagram

Reactions Enzyme EC Number

In flux Glucose None

Glucose -. Glucose 6-phosphate Hexokinase 2.7.1.69

Glucose 6-phosphate ,-. Fructose 6-bisphosphate Phosphoglucose isomerase 5.3.1.9

Fructose 6-phosphate -. Fructose 1,6-bisphosphate Phosphofructokinase 2.7.1.11

Fructose 6-phosphate ,- Fructose 1,6-bisphosphate Fructose-bisphosphatase 3.1.3.11

Fructose 1,6-bisphosphate ,-.

Glyceraldehyde 3-phosphate

Aldolase (triose phosphate

isomerase)

4.1.2.13

Glyceraldehyde 3-phosphate ,-.

Glycerate 1,3-phosphate

Glyceraldehydes 3-phosphate

dehydrogenase

1.2.1.12

Glyceraldehyde 3-phosphate -. Glycerol pathway NAD-dependent aldehyde

dehydrogenase

1.2.1.3

Glycerate 1,3-phosphate -. Glycerate 3-phosphate Phosphoglycerate kinase 2.7.2.3

Glycerate 3-phosphate -. Glycerate 2-phosphate Phosphoglycerate mutase 5.4.2.1

Glycerate 2-phosphate -. Phosphoenol pyruvate Enolase 4.2.1.11

Phosphoenol pyruvate -. Pyruvate Pyruvate kinase 2.7.1.40

Pyruvate -. Acetaldehyde Pyruvate decarboxylase 4.1.7.1

Acetaldehyde -. Ethanol Alcohol dehydrogenase 1.1.1.1
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Figure 5.3 Comparison of glycolytic pathway maps. (a) Map of all known intermediate sugar and

enzymes between glucose and ethanol production. (b) Reduced set of intermediates modeled by Wolf

et al. (2000) due to lumped reactions. Reactions were lumped together by using known equilibrium

ratios to scale out a variable. The unseen intermediates are included in the implicit definition of

enzyme rate kinetics and system parameters. Biological names have been used in the image to facilitate

the reader’s familiarity with the pathway before turning to symbols. The enzymes catalyzing the reactions

are shown by name in (a) and the reactions are denoted symbolically in (b).
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5.1.1.2 What Are the Kinetics of the System and Chemical Reactions?

Notation With maps and chemical reactions in hand, we can transcribe these reference

tables into mathematical symbols. The legend of symbols helps us to easily go back and

forth between our noncomputational model descriptions and our developing mathematical

description. The legend has been created by assigning symbols to each molecule in our

component list (Table 5.2). To maintain a homogenous notation system, we should use

the same symbol (S ) with an indexed number rather than different symbols for each

molecule. This allows us to distinguish readily where in the pathway the substrate exists

and can suggest whether the variable is dependent or independent. Dependent variables

are assigned symbols first and independent variables are assigned last. Wolf used such a

pattern for the substrate backbone of the pathway but broke from the convention when

naming the coenzymes (Table 5.3; ATP-A3, ADP-A2, NADH-N2, NAD-N1). Although

the naming pattern used by Wolf seems fairly intuitive, it can become problematic when

working with large numbers of coenzymes and effectors or when comparing mathematical

models created by different lab groups. We maintain the Wolf notation to make it easy for

the reader to go back and forth between this text and the original modeling paper. Once we

have assigned symbols for each component, the assigned symbols can be substituted into

both our pathway map and chemical reactions (Fig. 5.4; Table 5.3).

Independent variables do not vary during the simulation. Enzymes are taken into

account implicitly by the rate equations that characterize the enzymatic activity. In the

model here, all enzymes are considered fixed independent variables in that their concen-

trations do not change. We assume that the rate of change of the total amount of adenonu-

cleotides (AT) and nicotinamides (NT) is negligible during the time frame of simulation and

therefore the amounts are constant. Although the total amounts of AT and NT are indepen-

dent of time, the amount of ADP versus ATP does change within the time course of the

simulation. Thus, AT and NT are best understood as independent variables and conserved

moieties. In proper biochemical notation, these would be labeled after the other reactions.

A3 þ A2 ¼ AT

N2 þ N1 ¼ NT

TABLE 5.2 Components and Their Symbolic Assignments Based

on Wolf et al. (2000)

Components Symbols

Glucose S1

Fructose 1,6-bisphosphate S2

Hydroxyacetone, glyceraldehydes

3-phosphate, triose-phosphates

S3

Glycerate 3-phosphate S4

Pyruvate S5

Acetaldehyde S6ex

Glycerol

Ethanol

ATP A3

ADP A2

NADH N2

NAD N1
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In addition to creating symbolic notation for the components of the reactions, we assign

symbols for each biochemical reaction. There are two kinds of notations used to represent

rates of change. The first is used for the uptake of glucose. Biologically, this process

involves sugar transport across the yeast cell membrane. Although the model does not

include physical characteristics, we use notation that indicates the nature of the reaction

Figure 5.4 Creating the map. (a) The same pathway as seen in Figure 5.3 is presented here for easy

comparison to the completed map. (b) The pathway map shown here substitutes the enzymes with nota-

tion for the velocity (V) of the reactions and the influx (J0) of glucose and efflux (J1) of acetaldehyde from

the cell. Carbon molecules are assigned symbols and numbered sequentially. Cofactors are given sep-

arate notation. This is consistent with the notation used by Wolf et al. (2000).

5.1 CREATING A NONCOMPUTATIONAL GLYCOLYSIS MODEL 83

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


in the notation. J is commonly used to identify a flux rate, which is defined generally as flow

across an area. The acetaldehyde efflux is also noted with J. The second notation that is

dominant in our model and many biochemical reaction models is velocity (vn) for the

rate of mass transiting from one state to another. The number (n) increases in the order

of the reaction’s appearance within the model.

Create Equations Writing equations for the model involves at least two steps: (1) the

differential equations of the system and (2) writing rate equations for the chemical

reactions. Differential equations draw directly from our map and list of reactions with

symbolic notation. The equations state how each metabolite changes over time in relation

to the other metabolites. The change of any object over time is a rate. We write the rate of

change in a metabolite (S) as a relationship between its rates of production and degra-

dation. The rates of production and degradation are indicated subtly in our list of reactions

by the arrows between substrate and product and less conspicuously in our flowmap where

each rate of change is indicated with the symbol v. By writing each equation as, the change

in product (dS) over time (dt) is equal (¼) to the rate of formation (vf) minus (2) the rate of

degradation (vd), we get the list of differential equations shown in Table 5.4.

TABLE 5.3 Symbolic Reactions

Chemical Process/Reaction Rate

Cellular influx of glucose J0
-. S1

Glucoseþ 2 ATP -. Fructose 1,6-bisphosphateþ 2ADP v1

S1þ 2 A3 -. S2þ 2 A2

Fructose 1,6-bisphosphate -. (hydroxyacetone, glyceraldehyde 3-phosphate) v2

S2 -. 2 S3

(Hydroxyacetone, glyceraldehyde 3-phosphate)þ

ADPþNAD ,-. 3-Phosphoglycerateþ ATPþNADH

v3

S3þ A2þN1 ¼ S4þ A3þN2

3-Phosphoglycerateþ ADP -. Pyruvateþ ATP v4

S4þ A2 -. S5þ A3

Pyruvate -. Acetylaldehyde v5

S5 -. S6

AcetylaldehydeþNADH -. EthanolþNAD v6

S6þN2 -. ethanolþN1

ATP -. ADP v7

A3 -. A2

(Hydroxyacetone, glyceraldehydes 3-phosphate)þNADH -. GlycerolþNAD v8

S3þN2 -. GlycerolþN1

Acetylaldehyde -. External acetaldehyde J1

S6 -. S6e

External acetaldehyde -. Degradation or withdrawal v9

S6e -.
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Each v in our set of differential equations maps to a kinetic rate. As themodeler, we define

the kinetic rate. Itmay be a common biochemical or enzymatic rate law. The kinetic rate is not

apparent in the notation we use to write the chemical reaction. The modeler chooses the rate

law that he or she believes describes the kinetic behavior of the reaction. This decision is based

on what the modeler knows of the system and the mediating enzyme. Once chosen, the rate

law governs how the reaction behaves in the simulation.We canwrite each rate (v) as a simple

rate equation (law of mass action) in which the reaction rates take the form kS, where S is any

of the substrates, S1, S2, . . . , S6e. Or we can write more flexible rate equations that can

describe the enzymatic rate under a broader set of conditions such as Michaelis-Menten.

Wolf chose to model the glycolytic processes as irreversible except those mediated by

glyceraldehyde 3-phosphate dehydrogenase and phosphoglycerate kinase. Under con-

ditions in which reactions are driven in one direction such as near saturating substrate,

it is often a reasonable assumption to model the reaction as irreversible. The experimental

system moves yeast from glucose-starved to glucose-rich (20 mM) conditions (Richard,

1996). This creates saturating conditions for the influx of glucose, which we model as a

constant flux that drives the subsequent reactions forward. Choosing to model the glyco-

lytic reactions as irreversible means that we cannot use this computational model

to examine the behavior of glycolysis in situations in which the system is reversible

(e.g., high glycerol content and low glucose).

We also assume that mass action kinetics are sufficient to describe the majority of

reactions that might otherwise be described by Michaelis-Menten kinetics. For phospho-

fructokinase, we know that it is a highly regulated enzyme inwhich there are both activators

and inhibitors. However, in this model system, we are focused on the changes in levels of

metabolic intermediates and the coenzymes, not the intricacies of phosphofructokinase

regulation. Therefore, only inhibition of phosphofructokinase by ATP was included. It

was taken into account by including an inhibition constant and cooperativity coefficient

(Table 5.5, R2). The general form of the kinetic type used to model phosphofructokinase

was Michaelis-Menten (Table 5.5).

5.1.1.3 What Are the Parameters and Initial Conditions for the System? To

analyze the behaviors of ourmathematical model, wemust “solve” the differential equations.

TABLE 5.4 System Differential Equations

J0
dS5

dt
¼ v4 � v5

dS1

dt
¼ J0 � v1

dS6

dt
¼ v5 � v6 � J1

dS1

dt
¼ J0 � v1

dS6ex

dt
¼ J1 � va

9

dS2

dt
¼ v1 � v2 J1 ¼ k(S6 � S6ex )

dS3

dt
¼ 2v2 � v3 � v8

dA3

dt
¼ �2v1 þ v3 þ v4 � v7

dS4

dt
¼ v3 � v4

dN2

dt
¼ v3 � v6 � v8

aWolf et al. used a proportionality constant psi (0.1) that is included

in the rate constant J1. k is a proportionality constant for the efflux of

acetaldehyde.

5.1 CREATING A NONCOMPUTATIONAL GLYCOLYSIS MODEL 85

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


The equations describe our system approximately and can be solved accurately when pro-

vided specific values for the parameters (rate constants, concentrations). In other words,

we solve for a numerical solution to a single set of initial conditions and parameter values.

Parameter values and initial conditions are chosen that fall within biologically realistic

ranges (Table 5.6). The possible ranges are constrained by values obtained in lab exper-

iments. Wolf chose to tune the model parameters around the rate constant (k9) for

removal of acetaldehyde from the system. The rate of acetaldehyde removal is determined

TABLE 5.5 Rate Equations for the Chance in Rate Over Time (v)a

Rate Kinetic Function (Rate Equation) Parameters Gepasi R No.

J0 Constant flux J0: 50 mM�min21 R1

V1 k1S1A3

�

1=1þ

�

A3=Ki

�n�

k1: 550 mM21�min21 Ki: 1.9 mM n ¼ 4 R2

V2 k2S2 k2: 9.8 min21 R3

V3

kgkpS3 N1A2 � kakkS4A3 N2

kaN2 þ kpA2
kg: 323.8 mM21�min21 R4

kp: 76411.1 mM21�min21

ka: 57823.1 mM21�min21

kk: 23.7 mM21�min21

V4 k4S4A2 k4: 80 mM21�min21 R5

V5 k5S5 k5: 9.7 min21 R6

V6 k6S6N2 k6: 2000 mM21�min21 R7

V7 k7A3 k7: 28 min21 R8

V8 k8S3N2 k8: 85.7 mM21�min21 R9

J1 k(S6 –S6ex ) k: 375 min21 R10

V9 k9S6ex k9: 80.0 min21 R11

aInhibition of phosphofructokinase by ATP is taken into account by A3=Kið Þ
n . Whenwriting these into Gepasi, an asterisk

must be included between variables to indicate that they are multiplied (e.g., k2S2 is written k2
�S2). Spaces are used to

distinguish one term from another (e.g., S2þ S3 would be one term, S2þ S3 identifies two). R No. refers to reaction

order in Gepasi.

TABLE 5.6 Initial Concentrations for Glycolysis Model

Wolf et al. (2000)

S1: Glucose 1.09

S2: Fructose 1,6-bisphosphate 5.10

S3: Glyceraldehydes 3-phosphate 0.55

A2: ADP 1.71 ¼ A3/A2

A3: ATP 2.19

N2: NADH 0.41

S4: Glycerate 3-phosphate 0.66

S5: Pyruvate 8.31

S6: Acetaldehyde 0.08

N1 N2/N1 ¼ 0.69

External acetaldehyde 0.02

Glycerol Fixed

Ethanol Fixed

A2þ A3 ¼ 4

N2þN1 ¼ 1

86 MODELING METABOLISM

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


experimentally by the rate of KCN or argon addition (Richard et al., 1993; Poulsen et al.,

2004). To date, it is understood that the amount of accumulated acetaldehyde must be less

than 250 mM for oscillations to occur (Richard et al., 1994, 1996b; Poulsen et al., 2004).

Wolf chose the rate constant to be 80 min21 based on a bifurcation analysis that enables

modelers to examine the overall behavior of the set of equations. The range of NADH con-

centrations possible with this value of k9 were within the range seen by Richard.

5.2 COMPUTATIONAL MODEL

It is worth pausing at this time to review the steps we have completed. We have used topo-

logical maps (diagrams of metabolic pathways); written explicit chemical reactions;

assigned symbols to each component; created differential equations that describe the beha-

vior of the pathways (symbolically); and chosen rate laws to describe the enzymatic beha-

viors of each reaction (law of mass action and others defined by Wolf). Each step was

performed without using a computer, and yet we have created a mathematical model of

the biological process. Now that we have characterized all features of the model, we

can use a numerical solver to simulate the behavior of the model.

Automated solvers are available in software applications for general and specialized

topics. General solvers include such software as MATLAB and Mathematica, which are

commonly used in math and engineering disciplines. The ODE table (Table 5.5) would

be used to create the mathematical model in these tools. In the tool we will work with,

Gepasi, we enter the reactions (the components and their relationships), rate equations,

and parameters that describe the model. These features are then used by the biochemical

simulator to construct the ODEs and algebraic equations that are solved for the simulation.

5.2.1 Software: Gepasi

Gepasi (Mendes, 1993) is one of a series of tools known as a general simulator; others

include SCAMP, METAMODEL, and MIST (Cornish-Bowden and Hofmeyr, 1991;

Sauro, 1991, 1993; Ehlde and Zacchi, 1995). These tools for modeling biochemical pro-

cesses vary in their design, user interfaces, and range of utility. Gepasi has a graphical

user interface that allows researchers to enter reactions with standard biochemical notation

rather than a programming language (Mendes, 1993; Sauro, 1993). Tools for modeling,

some more than others, often require training sessions for users to become fully fluent

with them. Choosing a simulator for your research group is based on your comfort

using the interface to enter information, navigate and view results, as well as the package’s

overall functionality. A number of biochemical kinetic simulators can be downloaded and

tried for free. These software are tailored for biologists and biochemists.

We are using Gepasi because it has a friendly user interface, provides a set of kinetic

rate laws to choose from, and is free for nonprofit use. The method for entering the model

reactions is similar to writing biochemical reactions of the biological process. As such it

maps well to early lessons in writing equations for biological processes and can be used at

multiple academic levels. As a research tool, Gepasi is significant in terms of its compu-

tational capabilities. It is one of the first simulators to have a well-developed parameter

estimation tool. It also supports metabolic control analysis and parameter scanning.

To use Gepasi, we must first go to the Gepasi Web site (http://www.gepasi.org),
download the software from the site to a local drive. The downloaded program installs
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Gepasi. Installation directions are provided at the site. The software is compatible with the

following operating systems:Windows95/98/2000/NTandXP.A tutorial designed to intro-

duce new users to Gepasi is also provided at theWeb site (see tutorial on signal transducers).

5.2.1.1 Entering the Model: Model Definition Each software tool has a different

interface for entering a model. This is why it is helpful to have developed a biological

system model prior to using any given simulation tool. This makes adjusting the software

independent of defining one’s model. When we open Gepasi, the initial window that

appears is “Model Definition” (Fig. 5.5). This is where the features of the model, reactions,

and kinetics, are entered. Each model is given a specific name, “title.” The Gepasi model

we are discussing now will be referred to as Glycolysis-Wolf.

Reactions The noncomputational model of our metabolic pathway contains the reactions

thatwewill simulate (Table 5.3).WithinGepasi,multiple reactions can be entered by clicking

on the “Reactions” button and writing out each reaction formula. Reactions are assigned a

reaction “Name,” that is, R1, R2, according to the order in which they are typed into the

software. You can also enter your own name for the reaction manually. The “Help” button

provided gives instructions on the syntax for writing the chemical reaction.

There are two main considerations when writing the equation in Gepasi syntax. One

is the structure of the equation and the other is the content. In Figure 5.6, we can see

the syntax for the first two reactions of our system, the influx of glucose (S1) and the

conversion of glucose to glucose 6-phosphate (S2). The syntax uses combinations of

letters, numbers, and symbols to describe the variables and directionality of the reaction.

The letter S and number 1 are recognized as a single variable named “S1.” The hyphen (-)

and greater than (.) symbols together indicate a forward irreversible reaction. Spaces are

critical for the appropriate recognition of variables or directions. For example, placing a

Figure 5.5 Gepasi Model Definition window. The Model Definition window is the first to appear when

Gepasi is started. Gepasi has a Windows-like interface such that at the top of the frame there are com-

mands in the menu dialogues “File,” “Options,” and “Help,” and an icon toolbar. The “Model Definition”

tab is selected, the left foremost tab. Title and comments are written in the text fields provided in this

window. Buttons are used to navigate through elements of the model that are to be defined by the user.
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space between the letter “S” and number “1” to create “S 1” instead of “S1” creates two

variables: one named “S” the other named “1.” The same combination without the space

creates one variable named “S1.”

We next consider the equation content. Reaction 2, the conversion of glucose to glucose

6-phosphate, involves the hydrolysis of 2ATP to 2ADP (Table 5.3; Fig. 5.6b). It might be

tempting to identify the hydrolysis as a separate reaction, creating two simple reactions of

S1 -. S2 and A3 -. A2 (Fig. 5.6a). However, the kinetics of the conversion of S1-S2 is

dependent on ATP hydrolysis. This is taken into account in the rate equation. Figure 5.6b

shows the same two reactions as Figure 5.6a. However, in Figure 5.6b the second equation

is written with the cofactors ATP (A3) and ADP (A2) included. The content and syntax of

the equation determines the type of kinetics Gepasi suggests for the reaction in later steps.

Figure 5.6 Gepasi ReactionWindow. Reactions are written by the user into the bottom left field “Reac-

tion.” Gepasi sequentially assigns a “Name” to each reaction as it is entered. (a) Two reactions have been

entered, the influx of glucose, S1, and conversion of glucose to glucose 6-phosphate, S2. A separate

reaction for the ATP, A3, to ADP, A2, could be considered. (b) Reaction 2, R2, has beenwritten to include

the cofactor ATP, A3. The second reaction of (a) and (b) represent two different types of reactions.
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Use the list of reactions in Table 5.3 to enter the remaining equations into Gepasi. When

done, one should have 11 reactions.

Kinetics To set the kinetics for the reactions we entered in Gepasi, click on the “Kinetics”

tab from the main window. The reactions we created are shown in the left frame and a list of

kinetic types on the right (Fig. 5.7). Gepasi presents a selection of kinetic types based on the

syntax of the highlighted reaction. The first three reactions of our model (R1, R2, R3) are

irreversible reactions as indicated by our use of the unidirectional arrow (-.). However,

the kinetic options presented when each is highlighted differ. This is because of differences

in the number of substrates and products involved. Each kinetic type chosen for the

reaction requires the value of a parameter to be provided. The parameter values enable

Figure 5.7 Gepasi KineticsWindow. (a, b) Images of the Kinetics window in Gepasi. The left “Reaction”

panel contains the set of reactions entered for the model. When a reaction is highlighted, its reaction

name is shown in the lower left field (a, R1; b, R3). The right-hand “Kinetic Type” panel lists kinetic

rate equations based on the syntax of the highlighted reaction. When a kinetic type is selected, the con-

stants or modifiers required for the rate equation are indicated to the top right corner of the frame. (a)

Constant flux is selected to model the influx of glucose (S1) in the first reaction (R1) of the model. (b)

Mass action (irreversible) has been selected for the conversion of glucose 6-phosphate (S2) to the

triose phosphates (S3).
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Gepasi to solve the ordinary differential equations associated with the reaction. The values

we enter are ideally based on experimental findings.

The kinetics of each reaction are indicated in Table 5.5. Reaction R1 is written as a flux

with no substrate specified, “constant flux (irreversible).” The parameter value for the irre-

versible influx of glucose is written as a velocity (J ). Reaction 2 has substrates that react at

some rate that determines the velocity at which glucose (S1) is converted to (S2), “Mass

Action (irreversible).” The parameter value for the rate at which the substrates react is indi-

cated as a rate constant (k). Reaction 3 is a unidirectional, one substrate, one product reac-

tion. Gepasi presents a series of predefined kinetic rates that may be used to model the

reaction. The “Help on Kinetics” button shows rate equations for each named rate law.

There will be times when one says, “None of the rate laws that I expected are showing

up as a choice.” This is a time to double-check your syntax. Again, improper spacing can

lead to two substrates appearing as one. For example, you might consider writing R2 as

S1 þ 2 A3 -. S2 þ 2 A2. Note the spacing of numbers and letters. Gepasi requires us to

rewrite the equation to S1þA3 þ A3 -. S2þA2 þ A2. Otherwise, instead of creating

two molecules of A3 or A2, we would create new metabolites named 2, A3 and A2.

Another reason for not seeing an appropriate rate law is that you need to define a new

one. When the enzymatic mechanism does not fit previously defined kinetic rate laws, you

can click on the “Kinetic Types” button to write your own equation to describe it. We need

to do this for reaction 2 (R2) in order to take into account inhibition of phosphofructo-

kinase by ATP and for reaction 4 (R4), whose reversible kinetics involves the rate con-

stants for two enzymes. The details of creating a kinetic type can be found in a tutorial

on the Gepasi Web site [Mendes, 1997; http://www.gepasi.org (see tutorial on signal

transducers)]. For any newly created rate equations, you must indicate the number of sub-

strates and products associated with the kinetic model (i.e., two substrates, one product).

Metabolites When all the reactions of the Wolf model are entered, the number 13

appears next to the “Metabolites” button. The initial concentrations of metabolites are

entered in the “Metabolites” window. Gepasi identifies the metabolites from the entered

reactions. “Metabolites” is where components of each reaction are designated as fixed

or variable. A check box is provided to indicate when a concentration is fixed (constant)

throughout the simulation, making it a parameter or boundary conditions. The default

setting is for components in the reactions to be considered variables. A default concen-

tration of 0.00001 mM, written in Gepasi as 1.e-005, is given to each metabolite. The

initial concentrations we use are the mean concentration values Wolf used (Table 5.6;

Fig. 5.8). Glycerol and ethanol are set as fixed values of 1. Why? These two end products

are produced but not monitored in our system. These types of fixed variables are called

boundary conditions or sinks. As fixed concentrations, they do not affect the rate of any

other reaction but they do provide a sink for mass of the system.

Reactions and their associated metabolites are created within a single compartment.

Compartments create boundaries for reactions and their metabolites. Given that Gepasi

was developed as a 2D simulator, spatial dimensions are not taken into account in the

simulations, only the reactions and time. Compartments act as a generic identifier of reac-

tions and metabolites that are available to one another. By creating more than one com-

partment, metabolites, and reactions can be separated from one another. Gepasi allows

for compartments to be linked together simulating transfer across membranes and allow-

ing users to set different conditions (parameters) in each compartment and comparing
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results. This creates a series of 2D simulations that use the results of one compartment as

parameters or initial conditions in another.

Moieties Gepasi recognizes mass conservation within the set of reactions entered. This

means that Gepasi generates a set of algebraic equations (i.e., A2þA3 ¼ AT and

N1þN2 ¼ NT). These equations tell the computer that the total amounts of adenine and

nicotinamidic molecules are independent of time even as the amount of any one molecular

Figure 5.8 Gepasi Metabolites window. Initial concentrations for the model variables are entered. The

check box allows us to fix metabolite concentrations to test the hypothesis of this model. Lower panel

shows Wolf values for six-variable simulation. Gepasi may reexpress values in scientific notation as

can be seen for S6, which was entered as 0.08. The “More . . . ” button must be clicked to access the

remaining variables and enter all initial values.
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state (A2, A3, N1, N2) varies dependently over time. The total mass of the conserved vari-

ables is calculated from the concentrations entered from the metabolites.

Methods In order to run any model as a simulation, we must choose the method for

solving the set of differential equations that describe how the system behaves. In

general, the ordinary differential equations in Gepasi are invisible to users. The kinetic

rate laws are the only glimpse of equations. They are a small part of the overall set of

equations that define the model mathematically. The specific parameter values we

provide allow us to solve numerically our set of system equations. Therefore, we must

choose a numerical method.

The “Method” button opens a panel in which we choose one of four numerical methods

for solving the ordinary differential equations of the system. Gepasi uses the set of solvers

known as Livermore Solver Of Differential Equations (LSODA) (Hindmarsh, 1983;

Mendes, 1993; Petzold, 1983). LSODA automatically selects one of two approximation

methods to use during the simulation based on the stiffness of the equations. Stiffness is

a function of the number of scales within the differential equations. For example, in our

model, the rate constant for the production of pyruvate is essentially 9 mM/min,

whereas the rate constant for glycerol kinase is 2000 mM/min. When equations are non-

stiff, the Adams method is used. For stiff regions, the Backward Differentiation Formulas

(BDF) method is used. LSODA is sufficiently robust for solving differential equations that

if the simulation fails, it is likely due to a faulty equation or relationship in the reactions.

The “derivation factor” is a feature of numerical solutions that sets how big or small the

finite step from one value to the next is in the calculation of a derivative. The value is

written as a percentage (i.e., if 0.1 is entered, it is read as 0.1%). The default settings

are sufficient for the simulations we wish to perform.

The methods available for steady-state analysis include Newton, integration,

Newtonian and integration, or backward integration (Fig. 5.9). The default setting for

the computational method for finding the steady state is Newtonþintegration with back

integration if all else fails (Fig. 5.9). Steady-state resolution (S.S. resolution) sets the

value for the amount of change that can occur within the variables and still have the

system considered to be at a steady state. By setting S.S. resolution to 0.00005

(5 � 1025 or 50 nm in a mM unit simulation), the concentrations must have a change

greater than this amount to no longer be at steady state. Gepasi Help pages provide

additional information on other settings and their mathematical formulations.

5.2.2 Simulation Controls

Each simulation tool has to be told by the user what to do with the model that has been

defined. To enable the user to define the simulation steps, Gepasi has created a series of

menu tabs: “Task,” “Scan,” “Time Course,” “Optimization,” “Fitting,” and “Plot.” We

will focus on an overview of the tabs required to run an initial simulation of the

modeled system: Task and Plot.

5.2.2.1 Tasks In this window, we define the type of experiment we are running in

the system, a time-course study or steady-state analysis (Fig. 5.10). For a time-course

study, we select the “end time” of the reaction and the number of time points to be reported

within the time course. The “Edit” button is used to select the parameters that will be mon-

itored during the simulation. The selected metabolites are then shown in the window to the

right. The collected data is saved to a default ASCII file named “tcsimresults.dyn” or
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“simresults.ss.” The type of simulation is selected by checking off the check box directly

under “Time Course” or “Steady State.”

5.2.2.2 Plot Gepasi files are graphed with third-party software, Gnuplot. Gnuplot

imports and displays the data stored in the simresult.dyn file (Fig. 5.11). The same

ASCII file may be imported to Excel or other graphing software. By examining the

ASCII files, we can see each data point value collected during the simulation.

5.3 RESULTS

5.3.1 Nine-Variable Model

Richard found experimentally that sustained macroscopic oscillations in glycolysis were

accompanied by oscillations in the six-carbon (C6) sugars and that the three-carbon

Figure 5.9 Gepasi Methods window. “Methods” button from themain GUI window opens the Numerical

Methods window. Dialogue boxes are used to set the parameters to approximate the solution to the

ordinary differential equations developed by Gepasi based on the reactions and kinetics of the model.

The default settings for BDF and Adams order are sufficient for this simulation.
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Figure 5.10 Gepasi Tasks window. (a) The Task window is used to tell the software how long to run the

simulation (“End Time”), how many time points to collect (“Point”), and where to save the simulation

results (“File”). (b) Variables and fluxes must be selected to be monitored during the simulation. They

are selected using the “Edit” button. (c) Monitored variables are visible in the Tasks window.
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sugar molecules (S3, S4, S5) did not oscillate. Richard argued that the relative amplitude

of the driving reactions should be greater than the relative amplitude of the driven oscil-

lations. Based on the observed experimental results, oscillations along the sugar backbone

were insufficient to drive oscillations in the subsequent metabolites (Fig. 1 from Richard).

Thus, he proposed that ATP/ADP oscillations are sufficient to drive NADH oscillations

when no oscillations are present in downstream metabolites. The Wolf model, which

we have re-created, was developed to address the hypothesis put forth by Richard.

The model that we have created is designed to examine the plausibility of a molecular

mechanism based on what we already know about yeast enzyme kinetics in anaerobic con-

ditions and with glycolytic oscillations induced. The modelers were not conducting exper-

iments beyond those performed by Richard and therefore were not developing additional

constraints that could be used to tune the parameters of the model to experiental values.

Figure 5.11 Screenshots of Gepasi plot tab (a) and Gnuplot generated graph of simulation results (b).

Variables highlighted in the X-axis and Y-axis columns (a) are plotted accordingly in the Gnuplot graph.
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The qualitative behavior of the model is what we use to assess whether or not the model

sufficiently reproduces the phenomenon of interest. With the model implemented in

Gepasi, we can begin to examine the behavior of the model. The nine-variable system

of Wolf with parameter values from Table 5.6 mimics behaviors of the yeast anaerobic

system of Richard in the following ways:

Oscillations are found throughout the glycolytic chain and in the energy carriers

(Fig. 5.12).

Figure 5.12 Results of nine-variable simulation. The simulation results are plotted using GnuPlot. Per-

sistent oscillations develop in all six variables of the pathway backbone (graph a: S1–S6) and the energy

carriers (graph b: A3, N2). S4 oscillations are significantly higher than the precursor metabolite S3 (graph

c). The nine-variable model was simulated with parameter values from Table 5.5 and initial values from

Table 5.6. The numerical method parameters were default values for derivation factor (0.1), BDF (5),

Adams order (12), and default relative tolerance (0.000001).
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The relative amplitude in S3 oscillations is smaller than the relative amplitude in S4

(Fig. 5.12, Table 5.7).

The relative amplitude of oscillations in the ration of ATP/ADP is greater than S4

(Table 5.7).

Given the model behaves as the experimental system in the behaviors that we wish

to examine (Fig. 5.12), we can next ask the question: do oscillations within the six-carbon

sugars and NADH (N2) still occur when S3, S4, S5 are constant? Unlike the experimental

system in which fixing the concentrations to a constant value is not possible, in our com-

putational model, we can eliminate the possibility of oscillations occurring by setting them

to fixed values. Once the metabolite concentrations are fixed, any subsequent oscillations

in the unfixed metabolites must be attributed to other factors in the model.

5.3.2 Fixed Variables: Six-Variable Model

Fixing the concentrations of variables redefines the set of equations that describe the

biology of the system. The differential equations describing the rates of change are set

to equal zero and the value of the variable is held constant. Mass still moves through

the system, but it moves such that the change in concentration over time for the fixed vari-

able is zero. Wolf chose to fix the concentrations of S3, S4, and S5 at values that were

biologically realistic and that satisfied the mathematical constraint of zero change in con-

centration over the oscillation period. Under these conditions, using the values identified

by Wolf, we see that oscillations persist in the six-carbon sugars S1, S2 and the energy

carriers A3, N2 (Fig. 5.13, Table 5.7). Oscillations persist in NADH in the absence of

oscillation within the three-carbon sugars, which is consistent with the observations and

hypothesis of Richard.

5.4 CONCLUSION

The strength of modeling this system is that it enabled the researcher, in this case Wolf, to

explore the prediction of Richard that oscillations in the six-carbon sugars and energy

carriers were sufficient to propagate oscillations through the pathway. To achieve this

experimentally, the enzymes producing the three-carbon sugars would have to be simul-

taneously inhibited without damaging the biological system and creating additional

artifacts. The model enabled Wolf to perform an experiment that was otherwise unfeasible

in the in vivo system. With the model in hand, you can explore other scenarios for meta-

bolite concentrations or enzymes functioning at different rate constants. For example, we

can ask additional questions of this model. For instance, the amplitude in NADH

TABLE 5.7 Relative Amplitudes of Select In Vivo and Simulated Variables

System S3:S4 ATP/ADP:S4 ATP/ADP:NADH/NAD

Richarda 34%:73% 98%:73% 98%:53%

Nine variable 0%:0% 75%:NF 75%:39%

Six variable 0%:0% 71%:0% 71%:15%

aModified results from Richard et al. (1996); NF, no fit to sinus curve.
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oscillations in the six-variable model appears to be less than that of the nine-variable

model. We can change initial conditions (starting concentrations) and parameters (rate

constants) to develop a better understanding of how the factors in the six-variable

model affect the phase, frequency, and amplitude of NADH oscillations. Wolf went on

to use the model to examine acetaldehyde as a synchronization mechanism for the

production of macroscopic population oscillations.

We chose the Wolf model because it clearly drew on experimental data and experi-

ments, highlighted the use of models to explore the plausibility of a mechanism, and

retained sufficient biological detail to be recognizable and believable as a model of glycoly-

sis. Other published glycolysis models have been made about different model organisms

and nonoscillating conditions (Richard, 2003). Many of these models are accessible in

online repositories in Systems Biology Markup Language (SBML) or as java applets

online (JWS) (Bier et al., 1996; Teusink et al., 1996; Hucka et al., 2003; Olivier and

Figure 5.13 Six-variable simulation. GnuPlot of six variables from simulation in which S3, S4, and S5

were fixed at 0.53393, 0.56646, and 0.83504, respectively. Oscillations develop and persist in S1 and S2

(a) and N2 (b).
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Snoep, 2004). Previously published models and model repositories are valuable for learn-

ing more about modeling glycolysis. The models contain the pathway structure, present the

equations used to model the reaction, and allow the user to change the parameter values

used by the system. Between publicly available models, software, and research articles,

it is possible from an educational perspective to construct resources that allow novices

to better understand the methods, benefits, and shortcomings of modeling glycolysis.
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Chapter 6
Cell Cycle

The cell cycle is a beautifully regulated system and is studied intensely because of its

direct relationship to development and growth, whether that is in the arrested cell

cycles of gametes, embryonic development through rapid divisions, or cancerous

growth due to abnormally regulated cells. Cell cycle phases impact cellular structures

and functions. Protein synthesis is inhibited, cytoskeletal structures are reorganized, and

DNA is replicated and segregated. It may be helpful to take a moment to clarify that

cell cycle and cell growth, although intimately related, are not the same. The cell cycle

is composed of the protein dynamics that enable cell growth. When the cell cycle is too

short because of faulty molecular interactions of the cellular machinery, cells fail to

increase sufficiently in size. In turn, if the cell cycle is unable to complete the process

of mitosis, no cell division occurs, and the population of cells does not grow. Cell

growth is a macroscopic property that refers at the individual cell level to the size of

the cell, but cell growth when applied to populations refers to the number of cells in the

population. Throughout this chapter, we will use cell cycle to refer to the molecular inter-

actions that drive the process of cell division.

Biochemical and cellular imaging studies in Xenopus laevis, starfish, sea urchins, and

mice have tightly correlated detailed information on gene and protein expression patterns

with cell cycle progression and inhibition. The wealth of knowledge concerning the mole-

cular patterns and functions of the cell cycle proteins makes the cell cycle an exciting

system to model. The difficulty in modeling the system, however, is that little is known

quantitatively about the kinetic rates of the individual reactions and bindings.

In this chapter, we will work with a minimal model of the cell cycle engine. These

models contain the fewest variables and parameters necessary for reproducing embryonic

mitotic cell cycle behaviors. Minimal models reflect the initial understandings of the bio-

logical factors involved. The molecular details of cyclin and cyclin-dependent kinase
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interactions that are the molecular machinery are indirectly reflected in the gross behavior

of the system. More detailed models of the cell cycle engine have also been developed.

The number of variables and parameters in these more detailed models makes them

unwieldy for the purpose of this textbook. However, these models, particularly those

developed by Novak and Tyson, are also of great interest because of the experimentation

done in parallel, which highlights the usefulness of models in producing testable

hypotheses.

6.1 CELL CYCLE CHARACTERISTICS

6.1.1 Protein Patterns

The cell cycle engine has been studied and reviewed in great detail in other texts. We will

focus in the following sections on highlights of the cell cycle relevant to the development

of the model discussed and refer readers to other materials for more in-depth discussions

(Doree, 1990; Nurse, 1990; Nugent et al., 1991; Murray and Hunt, 1993). It is helpful to

begin with an understanding of the biological features that we want to examine with our

model. The patterns generated by cell cycle proteins are briefly described below.

The driver of the cell cycle is MPF. MPF was identified through functional assays in

which oocytes arrested in meiosis were induced to obtain metaphase characteristics by

the injection of cytoplasm from other metaphase staged oocytes (Fig. 6.1) (Masui and

Markert, 1971). Once its role in mitosis was also recognized, the factor originally

dubbed maturation promoting factor (MPF) became known as M-phase promoting

factor. The characteristic behavior of MPF is that its activity is low during interphase

and high during meiosis or mitosis (i.e., M-phase). It was later determined that MPF is a

heterodimer of two proteins, cyclin and a cyclin-dependent kinase (cdc2) (Labbe et al.,

1988, 1989; Gautier et al., 1990). The kinase is regulated by binding to cyclin and sub-

sequent phosphorylation states. The schematic provided in Figure 6.2 maps out the

series of core reactions that take place to drive the cell cycle forward. We will review

the characteristics of the major components of the cell cycle in the following paragraphs

and refer to mitotic cyclins as cyclin and to cyclin-dependent kinases as cdc2 kinase.

Cyclins are a family of proteins whose expression increases and decreases in relation to

cell cycle stages. Numerous protein gels andWestern blots have shown that mitotic cyclins

are synthesized throughout interphase: their levels reach and maintain a peak during

M-phase and drop precipitously at anaphase (Evans et al., 1983; Minshull et al., 1989a,

1989b; Murray and Kirshner, 1989). The decrease in cyclin concentrations is due to the

periodic degradation of cyclins. The cyclins contain a conserved sequence of amino

acids known as the destruction box (Nugent et al., 1991). The destruction box is the

target of the ubiquitin-mediated proteolytic pathway that is responsible for the rapid degra-

dation characteristic of this family (Glotzer et al., 1991; King et al., 1996). The ability to

mutate the destruction box such that degradation is prevented has created a powerful tool,

nondegradable cyclin, that has been used to discover many of the molecular behaviors

involved in the cell cycle.

In contrast with the cyclins, protein levels of cdc2 are essentially constant throughout

the cell cycle (Simanis and Nurse, 1986; Labbe et al., 1989). Although cdc2 levels are con-

stant, the kinase activity of this protein is periodic due to its regulation by cyclin and a

series of phosphorylation events. Cyclins bind cdc2 to form the inactive MPF heterodimer

104 CELL CYCLE

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


Figure 6.1 Schematic of microinjection studies in oocytes that led to the characterization of MPF. Cyto-

plasmic material taken from oocytes in the first mitotic cycle when injected into meiotically arrested

oocytes led to the progression of these cells to M-phase.
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complex. Activation of cdc2 kinase (MPF) in vivo occurs once cyclin reaches a concen-

tration threshold. A temporal lag of �10–20 minutes between cyclin reaching its

threshold concentration and the full activation of MPF was found in Xenopus extracts

by Solomon et al. (1990).

One purpose of the model we are going to examine is to determine what parameters are

important to the time lag that is seen between cyclin reaching its threshold concentration

and detectable activation of MPF. Solomon et al. (1990) explored the possibility of the lag

being due to the rate of binding between cyclin and cdc2. However, he found the kinetics,

5 minutes for complete binding, to occur more rapidly than the lag and therefore an insuffi-

cient explanation for the delay (Solomon et al., 1990). We will see later as we examine a

modified version of a model put forth by Goldbeter (1991) that temporal delays can arise

from the enzymatic properties and protein concentrations of the system.

Cyclins and cdc2 in vivo are found in multiple states. These states correspond with

changes in kinase activity and to different stages of the cell cycle. Newly synthesized

cyclin is unbound monomer cyclin. During the onset of interphase, unbound cyclin is

the most abundant cyclin state. Cyclin binds cdc2 to form a cyclin-cdc2 complex, the inac-

tive MPF. Inactive MPF accumulates throughout interphase as the total concentration of

cyclin increases (i.e., boundþ unbound ¼ total). Although the total amount of cyclin

Figure 6.2 Protein interactions that drive the progression of the cell cycle are shown in the upper half of

the figure. Each reaction leads to the production of a new variable state. The corresponding level of MPF

activity is shown below the molecular interactions. Solid arrows indicate a biological reaction, whereas

dashed lines indicate the molecule participates as a cofactor.
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increases throughout interphase and decreases during exit from mitosis, cyclin is distrib-

uted between the bound and unbound states. Nonetheless, the activation of MPF is often

characterized in relation to changes in total concentration of cyclin.

The phosphorylation state of cdc2 is critical to the activation or inactivation of MPF.

When bound to cyclin, cdc2 is phosphorylated and dephosphorylated to activate the

MPF kinase. Together, phosphorylation and dephosphorylation of cdc2 kinase occurs

within 20 minutes in Xenopus extracts generated by Solomon et al. (1990) and within

50 minutes in sea urchin eggs (Meijer et al., 1991). We know from experimentation

that cdc2 is phosphorylated on both a threonine and tyrosine. The latter is an inhibitory

phosphorylation. When cdc2 is phosphorylated on tyrosine and bound to cyclin, MPF is

inactive regardless of the phosphorylation state of threonine. MPF mediates its own

activation by stimulating dephosphorylation of tyrosine in the inactive MPF (Gautier

et al., 1991; Kumagi and Dunphy, 1992). This creates an autocatalytic activation loop.

Together, cyclin and cdc2 kinase create multiple variable states with two categories of

functionality: active or inactive (Fig. 6.2).

Active cdc2 kinase also stimulates the degradation of cyclin (Felix et al., 1990). MPF

stimulates the ubiquitination of cyclin, and the ubiquitin proteolytic pathway is responsible

for the rapid degradation that is required for the inactivation of MPF. This provides a nega-

tive feedback loop for the biological system. The kinetics are characterized by a temporal

delay between high levels of cdc2 kinase activity and the degradation of cyclin. Felix et al.

(1990) and Glotzer et al. (1991) observed the delay to be �15 minutes. The delayed onset

of cyclin degradation suggested that an intermediate factor must be involved to trigger the

degradation of cyclin. The literature often referred to the intermediate factor as factor X

(Goldbeter, 1991). We now know that ubiquitin activating proteins and the anaphase pro-

moting complex (APC) mediate MPF-triggered cyclin degradation (King et al., 1996). The

degradation of cyclin leads to the inactivation of MPF. This completes the feedback loop

between cyclin activation of MPF and MPF degradation of cyclin and subsequent

inactivation of MPF.

6.1.2 Behavior and Experiment Highlights

The cell cycle behavior in Xenopus embryos is repetitious oscillations. The network of cell

cycle reactions contains two commonly known structures for biochemical oscillations:

autocatalytic activation and a negative feedback loop. Although the network of reactions

is a prerequisite for oscillations, they are not sufficient. The dynamics are dependent on the

parameters associated with each variable and the rate equations: Vmax, initial concen-

trations, and Km’s.

Highlight 6.1

Expected Behaviors

Cyclin accumulates throughout the cell cycle.

MPF is activated after cyclin reaches a threshold concentration level.

There is a time delay/lag between MPF activation and cyclin degradation.

Delay exists between cyclin reaching threshold and activation of MPF.

Delay exists between activation of MPF and degradation of cyclin.
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From the introduction, we can highlight some overall general behaviors. Cyclin

accumulates linearly until its degradation is triggered by MPF. There is a temporal

delay of �20 minutes between cyclin accumulation and the activation of MPF. Tyro-

sine phosphorylation and dephosphorylation occurs within 20 minutes of cdc2 incu-

bation with saturating levels of cyclin (Solomon et al., 1990; Meijer et al., 1991).

Although the rate of degradation is rapid, the onset of cyclin degradation does not

occur immediately with the addition of active cdc2 kinase but rather has a delay of

�15 minutes (Felix et al., 1990; Glotzer et al., 1991; King et al., 1996). The model

we explore in this chapter enables us to examine the relationship of thresholds to

the length of the delay.

6.2 MODELING THE CELL CYCLE

Based on the experimental patterns identified above, a number of conceptual models

have been developed and put forth. We can discuss conceptually the dynamics of the

cell cycle as changes in MPF activation, changes in cdc2 kinase activation and in

cyclin expression, or changes in molecular binding and phosphorylation states

(Fig. 6.3). These conceptual models look at different degrees of detail. The appropriate-

ness of a model will depend on what aspect of the biological phenomenon you are inter-

ested in. If you are interested in the effect of cdc2 phosphorylation on the kinetics of cell

cycle progression, the first model that only grossly depicts MPF activation and inacti-

vation would be insufficient. Conversely, if your focus requires knowing solely that

Figure 6.3 Diagrams of MPF activation and inactivation at two different levels of abstraction. Each dia-

gram illustrates the topological representation of distinct models of the cell cycle. Each model includes

the activation and inactivation of MPF. They differ in their degrees of detail. (a). MPF is modeled as two

states: MPF inactive and MPF active. Cyclin is produced and degraded, indicated by the solid arrows.

The dashed line indicates cyclin’s affect on the rate of MPF activation. (b). MPF is modeled at the

level of protein interactions and phosphorylation states. This more detailed model allows rates of com-

plex formation between cyclin and cdc2 to be accounted for explicitly.

108 CELL CYCLE

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


MPF is activated, the detailed dynamics of the binding rates of cdc2 and cyclin may be

more cumbersome than helpful.

Some of the conceptual models have been transformed into mathematical models. The

models were developed to explore the plausibility of mechanisms responsible for delayed

cyclin degradation, oscillations, and changes in cell cycle duration (Goldbeter, 1991;

Norel and Agur, 1991) or to explore whether the known set of biological factors

(kinases, phosphatases) were sufficient to describe the full range of cell cycle behaviors

(Tyson, 1991; Novak and Tyson, 1993). These models reproduce some or all of the beha-

viors observed in laboratory experiments. Each model reflects the core components of the

cell cycle in various degrees of detail. At the level that we will be developing models,

the basic components of the cell cycle engine are the same. The model will be used to

explore two questions: Are feedback loops and thresholds sufficient to generate the peri-

odic rise and fall in protein concentrations that are characteristic of the cell cycle patterns

we see in vivo? Are the feedback loops and thresholds sufficient to generate delays in

activation of MPF and degradation of cyclin?

6.2.1 System Statements of the Minimal

Let’s begin with a simple model for the cell cycle engine. This model will embody the

following statements:

1. Cyclin is synthesized and degraded.

2. MPF activation is dependent on cyclin concentrations.

3. MPF is activated and inactivated.

4. MPF activates cyclin degradation via a proteolytic enzyme.

This model can be used to explore whether feedback loops are sufficient for the gener-

ation of cycles and the observed temporal delay in activation of MPF and degradation of

cyclin. The components are cyclin, MPF, and a proteolytic enzyme. MPF and the proteo-

lytic enzyme in our model have two states, active and inactive. In this case, we describe the

model as having three components. Thinking of molecules as a single factor with multiple

states will become useful later for decreasing the number of variables to be calculated

during our simulations. We can draw a diagram for the statements above as in

Figure 6.4. This resembles earlier diagrams of MPF activity when it was not yet known

that MPF is a complex of cyclin and cdc2. MPF in this model is synonymous with cdc2

kinase. However, the model will not explicitly model the molecular reactions of cyclin

binding or phosphorylation and dephosphorylation. To avoid implying a false level of

molecular detail, we will use the term MPF.

This model includes a negative feedback loop on the activation of MPF via the

protease-mediated decrease in cyclin concentrations. We have chosen in this model to

describe the relationship between cyclin and MPF phenomenologically, meaning that

we ascribed a rate of MPF activation based on what is observed experimentally and that

is proportional to total concentration of cyclin but that does not include the details of

complex formation between cdc2 and cyclin.

As in previous chapters, we will give every solid arrow in our flowchart a symbolic nota-

tion thatwill be used in the differential equations that describe themodel. There are six flows

of material in the model that has been drawn. V1 is the production of cyclin, V2 is cyclin
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degradation, V3 is MPF activation, V4 is MPF inactivation, V5 is protease activation, and V6

is protease inactivation. This diagram is similar to the schematic developed by Goldbeter

(1991). The cyclin protease downstream of MPF is denoted by X. The dashed lines in the

diagram indicate variables that act as modifiers or cofactors in the process.

6.2.2 Ordinary Differential Equations

We can now write a set of differential equations that describe the rate of change of each

variable (cyclin, C; MPF active, Ma; MPF inactive, Mi; protease inactive, Xi; protease

active, Xa) in terms of its input and output reactions.

1. Rate of change of cyclin ¼ rate of cyclin production2 rate of cyclin degradation

dC

dt
¼ V1 � V2:

2. Rate of change of Ma ¼ rate of Mi activation2 rate of Ma inactivation

dMa

dt
¼ V3 � V4:

Figure 6.4 The flowmap indicates cyclin synthesis (V1) and degradation (V2). Cyclin acts as a cofactor

(- - -) in the activation of cdc2 kinase (V3) from an inactive to active state. Active cdc2 kinase becomes

inactive (V4). Active cdc2 kinase acts as a cofactor in the activation of the protease (V5). The protease

becomes inactive. The protease mediates cyclin degradation.
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3. Rate of change of MPFi ¼ rate of Ma inactivation2 rate of Mi activation

dMi

dt
¼ V4 � V3:

4. Rate of change of Xa ¼ rate of Xi activation2 rate of Xa inactivation

dXa

dt
¼ V5 � V6:

5. Rate of change of Xi ¼ rate of Xa inactivation2 rate of Xi activation

dXi

dt
¼ V6 � V5:

This set of differential equations describes how each variable of the model changes over

time. By relating to MPF as one factor with two different states (active and inactive) that is

neither synthesized nor degraded, we can define the total concentration of MPF as constant

and the inactive and active states as fractions of that constant value. We can reduce the

number of differential equations by taking advantage of what we know about MPF and

the protease X in terms of mass. Each factor exists in two states, active (Ma, Xa) and inac-

tive (Mi, Xi) in the model. We can look at our diagram and see that there is no gain or loss

of mass between Ma and Mi or Xa and Xi. If the amount of Mi increases, the amount of Ma

must decrease by the same amount and vice versa. The same is true for Xa and Xi. Another

indicator of mass conservation is that Ma and Mi are both defined by V3 and V4. Xa and Xi

are both defined by V5 and V6. Because mass is conserved, we can write the amount of one

variable in terms of the other and thereby reduce the set of equations from five to three

(Table 6.1; see “Simplifying the set of ODEs” in Chapter 4).

6.2.3 Michaelis-Menten Rate Equations

The exact behavior of this model depends on the rate laws used to define the velocities in

the differential equations and the values assigned to the accompanying parameters. As

modelers, we choose rate laws that we deem appropriate for the reaction we are modeling.

In this case, we will work with Michaelis-Menten rate laws.

TABLE 6.1 Table of ODEs

1.
dC

dt
¼ V1 � V2

2.
dMa

dt
¼ V3 � V4

3.
dMi

dt
¼ V4 � V3

4.
dXa

dt
¼ V5 � V6

5.
dXi

dt
¼ V6 � V5
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Michaelis-Menten takes into account that the enzyme may become saturated. Once

saturated, the rate of the reaction no longer increases linearly with increasing substrate

concentrations. Michaelis-Menten rate laws determine the velocity in terms of the concen-

tration of the substrate, the Vmax for the reaction, and Michaelis constant Km. From the set

of rate laws, we can see the parameters for which we need to provide values (Table 6.2).

The Michaelis-Menten rate laws describe the behavior of enzymatic reactions better than

mass action kinetics, particularly when the reaction has saturation characteristics. The

values shown in Table 6.2 are those used by Goldbeter (1991). These values produce oscil-

lations in cyclin, MPF, and protease activity that closely mimic the cell cycle patterns of

Xenopus embryos.

6.2.4 Parameter Values: Lab and Model

An important discussion is how to think about the units or lack of units that exist in

the models we are presenting and the data that is collected in the laboratory. Where

do the concentration, Vmax, and Km values come from or how are they estimated? One

of the initial relationships to discuss is that of concentrations. In the simulations performed

in Stella, the initial concentrations were set to 0.01. Why? One reason is that it is twofold

greater than the Km values that were used in the model. Km was set to 0.005. By the initial

concentrations being greater than the Km, the reactions will run closer to the enzymatic

maximum velocity. Goldbeter has previously shown that sharp thresholds appear in the

TABLE 6.2a Rate Equations and Parameters

Reactions Parameters

Cyclin conc 0.01

Ma conc 0.01

Xa conc 0.01

Cyclin synthesis

k1 V1 k1 0.025

Cyclin degradation

vmax2 � Xa � Cyclin/(Km2þ cyclin) V2 vmax2 0.25

Km2 0.02

MPF activation

vmax3 � Cyclin/(Kc3þCyclin) � Mi/(Km3þMi) V3 vmax3 3

Km3 0.005

Kc3 0.5

MPF inactivation

vmax4 � Ma/(Km4þMa) V4 vmax4 1.5

Km4 0.005

Protease activation

vmax5 � Ma � Xi/(Km5þ Xi) V5 vmax5 1

Km5 0.005

Protease inactivation

vmax6 � Xa/(Km6þ Xa) V6 vmax6 0.5

Km6 0.005

aParameter values in the table match those used in the Stella concept map. Vmax is used to indicate Vmax values for

reactions. Km is the Michaelis-Menten constant Km for the reaction. However, Kc is used for the Km governing cyclins

behavior in MPF activation V# is the overall reaction rate.
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dynamics of coupled converter enzymes (i.e. phosphatase and kinase) when they are satu-

rated (Goldbeter, 1991). By the concentrations being greater than the Km, the model

system is optimized for discovering if threshold conditions exist and how they affect

the behavior of the system.

The concentrations of active MPF (Ma) and active protease (Xa) are unitless because

they have been“scaled” by the total concentration of MPF and protease, respectively.

The total concentrations of MPF and protease within the model are conserved (see

Chapter 4). No mass is removed from the system for these two variables. Instead, the pro-

teins transit between active and inactive states, such that the amount of protein in either

state is a fraction of the total concentration, which is scaled to 1. The experimentally

derived concentration for the total amount of each variable can be multiplied by the par-

ameter value in the simulation in order to re-establish scales. Goldbeter (1991) assumed a

concentration of cdc2 kinase (MPF in our model) to be 4 mM based on Sea Urchin studies

(Labbe et al., 1989). The distribution of MPF between active and inactive states is thus

the fraction seen in the model multiplied by the parameter 4 mM.

From laboratory experiments we have ranges of concentration values that have been

found for cyclin and cdc2 kinase in vivo and in vitro. Solomon et al. (1990) worked pri-

marily with 70 nM cyclin in Xenopus extracts although 32 nm was sufficient to trigger

activation of H1 kinase activity; Sha et al. (2003) explored the concentrations of

cyclin that allow for exit from mitosis in Xenopus extracts and found a threshold of

40 nm. It is believed that cyclin concentrations are much smaller than the total

concentration of cdc2 kinase (Labbe et al., 1988, 1989; Meijer et al., 1989; Solomon

et al., 1990).

We can estimate a rate constant for reactions based on the experimental data by finding

the slopes of lines from linear or exponential functions. If we assume exponential decay or

growth, we need to know either the observed half-life of the substrate molecule or the

amount that is lost from one time point to the next. When we know the half-life, we set

the observed rate equal to the natural log of 2 over the rate constant (k) and solve for k.

This rate constant is then treated as the Vmax of the Michaelis-Menten equation.

Degradation rates have been calculated and observed by Glotzer et al. (1991) to have an

0.46/min ubiquitin conjugation rate and a shorter rate of 0.053/min for degradation of

ubiquitin conjugates. This observed rate is almost twofold faster than what was used as

a variable by Goldbeter (1991) for the maximum velocity for cyclin degradation. We

can implement the model and then test the impact of the different rates on the overall

behavior of the system.

6.3 IMPLEMENTATION IN STELLA

The described model has been implemented in Stella with Michaelis-Menten rate

equations (Fig. 6.5). The parameters of the rate laws are drawn as converters (O) to

make them readily visible to the reader. The simulation results are shown in Figure 6.6.

The smallest parameter value is 0.005. This same value was used as the step size for

the simulation. By running the simulation at both 0.005 and 0.0025 with the same

method, Euler, we can confirm that this is an appropriate step size for approximating the

differential equations that describe the system’s behavior. Identical results were obtained

using the same step size with an alternative approximation method (Runge-Kutte 2;

see Chapter 4).
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6.4 SIMULATION RESULTS

It is worth noting that as in any experiment, we must be careful that what is inferred from

the results can be deduced from the experimental system. The variables we have—cyclin,

Mi, Ma, Xa, and Xi—are theoretical markers for the concentrations of proteins and in our

case the concentration of proteins with particular capabilities. An increase in Ma, active

MPF, is an increase in the population of MPF molecules that are active. It is not a direct

measure of activity. The only measure of MPF activity in the model is in the rate

at which active protease (Xa) is formed. In this case, MPF activity is described by a

Vmax and Michaelis constant that define how the amount of protease changes in relation

to MPF. This is a different measure than what we see in laboratory experiments

where MPF activity is defined either in relation to H1 kinase assays or the ability to

Figure 6.5 Stella concept map of the cell cycle model in the “World” view panel. Stocks ( ) represent

the pool of proteins, flows ( ) represent reactions or processes, converters ( ) represent par-

ameters, such as Km and Vmax, of the reaction rates, and connectors indicate that a stock or converter

participates in the reaction.
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stimulate 50% of a population of cells to progression to meiosis or mitosis (Wu and

Gerhart, 1980).

We can see from the simulation results that characteristic cycle behaviors are obtained

(Fig. 6.6). We see that the periodicity of the simulation results is�30 minutes. Embryonic

cell cycles in vivo are approximately 30 minutes and in vitro extracts vary between 35 and

55 minutes (Hara et al., 1980; Murray and Kirshner, 1989). Similar to the protein patterns

associated with interphase and the onset of mitosis, cyclin concentrations increase prior to

increases in active MPF. The onset of anaphase correlates to increasing amounts of active

protease and rapid decline in cyclin concentrations. In the model, cyclin concentrations

only decrease after activation of the protease.

In addition to cyclin concentrations increasing prior to activation of MPF, we see that

over the first 30 minutes of simulated time, cyclin levels rise linearly with a constant slope.

In contrast, levels of active MPF are low in the first 14 minutes then rise very rapidly with

an increasing slope until it peaks at 28 minutes. There is not a linear relationship between

MPF activation and cyclin concentrations. Also, we do not see in this graph (Fig. 6.6) the

pattern seen by Solomon et al. (1990) that indicated the threshold behavior between cyclin

and active MPF. This may be partly due to our ability to sample the data every minute in

the simulation, achieving a higher resolution, whereas samples are likely taken at longer

time intervals, e.g. every 10 minutes, in laboratory settings. We examine the threshold

behavior further with our next simulation.

The amount of active protease (Xa ) increases only after MPF is activated as expected.

Given the activation of X occurs after MPF, there is a built-in time delay for the increased

degradation of cyclin. Although the simulation began with cyclin at a concentration of

0.01, after the first cycle, cyclin levels decrease to 0.11 rather than 0.01. The lowest

level of cyclin is determined by the concentration that brings the rate of degradation

equal to the rate of synthesis, V1 ¼ V2. The inactivation of MPF begins in the first cycle

Figure 6.6 Simulation results of cell cycle model based on parameter and concentration values pro-

vided in Table 6.1. Simulation was run with Euler approximation method with delta t (DT) set to 0.005.

Graph was generated in Stella 7.0 Research.
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at 27 minutes and is complete by 30 minutes, such that the inactivation of MPF is rapid,

occurring within 3 minutes of the peak activation level.

6.5 NONDEGRADABLE CYCLIN AND CYCLOHEXAMIDE TREATMENT

Let’s now vary this model to test its ability to reproduce experimental results. By making

the cyclin concentration constant throughout the simulation, we can examine the behaviors

of the protease and MPF as a function of particular cyclin concentrations. To achieve this,

we have removed the influx and degradation of cyclin (Fig. 6.7). This mimics the con-

ditions created by adding nondegradable cyclin in the presence of cyclohexamide to

inhibit synthesis of new proteins. It is under these conditions that threshold behavior is

highlighted. In order to determine the threshold concentration in the simulated system,

we chose cyclin concentration values that temporally correlated with the steep rise in

MPF activity. When we run simulations with fixed values of cyclin, we see levels of

active MPF plateau at some maximum value (Fig. 6.8). Lower concentrations of

cyclin, 0.26 through 0.45, resulted in a small amount of MPF (,0.09) becoming active.

Full activation of MPF (98%) was obtained with cyclin concentration of 0.6. When we

plot the maximum amounts of active cdc2 kinase against cyclin concentration with

which it was obtained, we see the same steep threshold curve as seen by Solomon et al.

(1990) (Fig. 6.8).

6.6 DISCUSSION OF MODELS

In the minimal mitotic model implemented in this chapter, the delay between MPF acti-

vation and cyclin threshold is 3–4 minutes. The delay is determined in part by the rate

of activation of the protease and by our definition of “delay.” Here we define delay as

the time between a cyclin threshold of 0.47 and half the maximum level reached by

Figure 6.7 Interaction map of model, modified to represent reactions no longer included in simulation.

This was implemented within Stella by setting reaction rates to zero for the indicated processes.
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active MPF. This threshold value is not what is expected in vivo but is rather a product of

the parameter values chosen for the simulation.

This model does not take into account MPF’s positive feedback loop to its own acti-

vation. Neither does it explicitly model regulation of MPF by the phosphatase, Cdc25

and the inhibitory kinase, Wee1. Tyson (1991) and Novak and Tyson (1993) took both

of these aspects into account in their models of a general cell cycle machine and the

Xenopus embryo, respectively. Novak and Tyson (1993) have shown that the delayed acti-

vation of cdc2 kinase is dependent on the relative activity of Wee1 and Cdc25. The level

of active cdc2 kinase, which changes the amount of active Wee1 and Cdc25 and therefore

the effective rates of MPF inactivation and activation, respectively. By incorporating

Wee1 and Cdc25 into the model, we expect the delay between threshold and activation

to more accurately reflect the kinetics of what is seen experimentally.

A single protease with the parameter values used in this model is insufficient to generate

the same length of delay in the onset of degradation (Felix et al., 1990; Glotzer et al., 1991;

Marlovits, 1998). Subsequent models have included upstream activators of the ubiquitin

pathway, APC, and show delayed onset of degradation of 15–20 minutes (Novak and

Tyson, 1993). In our model, we include the activation of a protease that degrades

Figure 6.8 (a). Levels of active MPF (Ma) over time are plotted from four simulations. Cyclin initial

condition values were fixed in each simulation at 0.4, 0.45, 0.5 or 0.6. No oscillatory behavior is seen

in these simulations. (b). Maximum levels of active MPF are plotted relative to the fixed cyclin levels

in the simulation. Cyclin levels were fixed over a range of 0.24 to 0.7. The graph was generated in

Excel by importing numerical data points from Stella.
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cyclin. The degradation rate is set to be linearly proportional to the amount of active X. If

there is no active protease, no degradation occurs. Our initial concentration of Xa is 0.01, a

sufficient quantity for a low level of degradation to occur (data not shown). Once pro-

nounced degradation begins, the rate is proportional to the amount of available Xa.

The model simplifies many currently known biological events. Binding of cyclin to

MPF is not described. Instead, we model the effect of increased cyclin concentrations

on MPF activation. In order to take cyclin binding to MPF into account, we would

modify the topology of the model in both the schematic, for reference, and in Stella, for

implementation. Tyson (1991) and Novak and Tyson (1993) have generated models that

explicitly include the binding reactions between molecules. In their models, the rate

equations are mass action kinetics rather than Michaelis-Menten. They did not include

the feedback loops as seen in our model here but rather model MPF activating MPF.

We do not address these models here because of the larger number of variables and para-

meters. By increasing the number of details, the number of variables and parameters that

are investigated also increase. Although additional details may provide a more “realistic”

context, they also increase the number of dimensions that can be varied or need to be ana-

lyzed in relation to the potential results. Additional skills in manipulating differential

equations and phase plane analysis are desirable to effectively analyze and interpret the

behavior of such models.

The original models of Tyson (1991) and Novak and Tyson (1993) have been expanded

to examine regulators of cell cycle core components by Wee1 and Cdc25 and also con-

nected these underlying mechanisms to definitions of division, size, and DNA replication.

These models have been used to predict the size and kinetics related to mutant Wee1 pro-

teins in yeast. Recently, Sha et al. (2003) experimentally confirmed threshold predictions

by Novak and Tyson (1993) for the inactivation of MPF and exit from mitosis. Given

many parameters are unknown for the model components, these authors took advantage

of phase plane analysis to discover the behavior of the system and parameter values

that reproduce the results seen in laboratory observations. This method of analysis is a

powerful means of examining the qualitative behavior of variables in relation to one

another as a function of their differential equations.

6.7 CONCLUSION

The model in this chapter is a simplified version of cell cycle molecular interactions. These

simplifications take into account the major properties of cyclin synthesis, cyclin activation

of cdc2 kinase, activation of a protease, and the degradation of cyclin. Each aspect of the

model could be expanded to take into account additional details: cyclin binding to cdc2

kinase, phosphorylation and dephosphorylation steps, and the ubiquitin degradation

pathway. The purpose of this chapter was to introduce the reader to modeling the basic

assumptions of how the cell cycle works. With this basic understanding, it should now

be possible to adapt this model or others to explore questions in one’s own systems.

The model here shows that the presence of delayed negative feedback combined with

thresholds and time delays that occur as a function of the relationship between both

cyclin:cdc2 kinase and cdc2 kinase:protease are sufficient for the generation of cell

cycle oscillations (Goldbeter, 1991). The role of cdc2 autocatalysis has been explored

in other models and is also known to be sufficient for the generation of cell cycle oscil-

lations. These models do not have to be mutually exclusive but may rather be a method
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of ensuring the ability for the cell cycle to proceed. An important feature of the cell cycle

that is not explored in the model is the regulatory molecules that exert negative and posi-

tive controls on cell cycle progression. These factors have been explored in more detailed

models (Novak and Tyson, 1993; Marlovitis et al., 1998; Chen et al., 2000). Given these

models introduce additional variables and parameters, many values are absent, and the

modelers resort to phase plane analysis to discover parameter values that create the

observed experimental behaviors. The parameter values that solve the equations

become a premise for interrogating the experimental data. Are substrate concentrations

found in vivo that are seen in the model? Are the rate constants used biologically signifi-

cant or consistent with experimental results?

A key issue is the absence of Vmax and Km values for the enzymes involved. Modelers

will often use a method of parameter estimation to find parameter values that create the

behaviors observed in the experimental system. Although this allows us to say that the

model can produce the behavior, it is less satisfying than using experimentally derived

parameter values. In the model developed here, values were borrowed from multiple

experimental systems and estimated values for Km and Vmax. On one hand, the ability to

take data from multiple experimental systems and obtain reasonable results in the

model suggests that the model is universal. On the other hand, data from one experimental

system can be a better test of whether the model sufficiently describes the biological

system and leaves less room for questioning sources of variation.
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Chapter 7
Calcium Dynamics

The goal of this chapter is to examine how spatiotemporal modeling can enhance our

understanding of the cellular mechanisms that determine calcium dynamics. To do this,

we will first review what is known about the mechanisms involved in calcium dynamics.

We will then use the N1E-115 neuroblastoma cell line as our example of a biological

system for which to develop a conceptual and computational model. Diagrams will be

used to facilitate our creation of the conceptual model and initial corresponding mathemat-

ical descriptions. We then work with Virtual Cell to discuss and implement characteristics

of our model, particularly spatial features. We are choosing to use Virtual Cell because it is

one of a few tools that model spatial data and has a user interface tailored for biological

models. As well, models of calcium dynamics have been studied, published, and made

available with this tool.

7.1 THE BIOLOGY OF CALCIUM

Calcium is a well studied ion that participates in many aspects of cellular physiology such

as: cellular signaling, nerve impulses, fertilization, and other cellular behaviors. A number

of fluorescent microscopy techniques are designed to measure relative and quantitative

amounts of the calcium in the cytosol and organellar compartments. By monitoring

levels of calcium over time, we obtain the empirical data that describes its spatiotemporal

behaviors—dynamics. Examples of calcium patterns include calcium oscillations, spikes,

and waves (O’Sullivan et al., 1989; Rooney et al., 1990; Berridge, 1993; Kasai et al.,

1993). Localized and global changes in calcium levels lead to many subsequent events

such as secretion, contraction, motility, and embryonic development.

Calcium concentration and distribution in the cytosol and organelles are regulated by the

actions of calcium pumps, channels, and by binding proteins (Fig. 7.1). The Na-Caþ
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exchanger at the plasma membrane, ATP pumps in membranes of the endoplasmic and sar-

coplasmic reticula, and the uniporter within the mitochondria move calcium out of the

cytosol to the extracellular environment, endoplasmic and sarcoplasmic reticula, or mito-

chondria, respectively (Gill et al., 1981; Gill and Chueh, 1985). These mechanisms

remove calcium from the cytosol. In contrast, calcium channels in both the plasma mem-

brane and endoplasmic reticular (ER) membranes release calcium into the cytosol creating

an influx of calcium. Together, the influx and efflux of calcium determine the amount of

calcium within the cytosol and organelles.

Calcium in the cytosol can be classified as existing in two states: bound and unbound to

buffers. Calcium binding proteins, as a population within the cell, buffer the amount of

cytosolic calcium free to diffuse through the cytosol or free to interact with other cellular

molecules. Unbound calcium is often referred to as free calcium; the population of

binding proteins and molecules as calcium buffers. Free calcium is available to bind to

fluorescent indicators (e.g., Fura-2, indo-1), used to measure calcium concentrations and

detect calcium waves and oscillations.

At a very gross level, the features that determine calcium concentrations in a cell

generally include influx and efflux of calcium through pumps and channels and buffering

and storage in cellular compartments. The distribution of calcium within the cytosol and

organelles is a factor that affects localized changes in concentrations of calcium. In the

next few pages of this chapter, we discuss a generalized model of InsP3-regulated

calcium dynamics and then tailor the model to specifically examine calcium dynamics

in the neuroblastoma cell including spatial distributions of proteins and organelles.

Figure 7.1 Schematic of molecular components of cytosolic calcium dynamics including channels and

pumps at plasma membrane and endoplasmic reticulum.
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7.2 MECHANISM RESPONSIBLE FOR CALCIUM BEHAVIOR

Two mechanisms are responsible for maintaining low, �7 � 1025 mM, cytosolic concen-

trations of free calcium, despite high concentrations of calcium in the extracellular

space, �1–2 mM. They are (1) extrusion from the cell or sequestering into organelles

and (2) buffering of calcium by calcium binding proteins. Increases in cytosolic calcium

concentrations are attributed to influx of extracellular calcium and release of intracellular

calcium stores. Spatial distributions of cellular machinery have been proposed as the

basis for localized differences in calcium concentrations within the cell (Fink et al., 1998).

7.2.1 Extrusion and Sequestering

ATP pumps, uniporters, and ion exchangers are the dominant mechanisms for removing

calcium from the cytosol (Fig. 7.2). ATP pumps in the plasma membrane, sarcoplasmic

and endoplasmic membranes undergo a cycle of phosphorylation and dephosphorylation

that results in a single calcium ion being transported across the membrane. The activity

Figure 7.2 Calcium extrusion and sequestration. Schematic of molecular mechanisms responsible for

decreasing free cytosolic calcium concentrations. Plasma membrane pumps have been drawn as a

single pump. Calcium binding with endogenous buffers (B) decreases the concentration of free calcium.

Sarco-endoplasmic reticular ATPase pumps calcium into the endoplasmic reticula.

7.2 MECHANISM RESPONSIBLE FOR CALCIUM BEHAVIOR 123

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


of these pumps is best described by Hill-type kinetics (Gill et al., 1981; Gill and Chueh,

1985; Lytton, 1992). Plasma membrane calcium pumps differ from intracellular pumps in

location and sensitivities to pharmacologic agents. The intracellular pumps are known as

the sarco-endoplasmic reticulum calcium ATPase, or SERCA, pumps. Both types of

pumps help maintain low calcium concentrations in the cytosol by removing calcium

from the cytosol. The pumps and Naþ/Ca2þ exchanger in the plasma membrane remove

calcium from the cytosol by extruding it from the cell. In contrast, the SERCA pumps

remove calcium by sequestering the calcium within reticular structures. In muscle cells,

this would be the sarcoplasmic reticulum; in other cells, the endoplasmic reticulum.

7.2.2 Cytosolic Calcium Buffers

Buffers play a significant role in the characteristics of the spatiotemporal patterns of

calcium. Calcium buffers are essentially all those proteins that interact with cytosolic

calcium and thus remove it from the “free” pool (Fig. 7.2). Less calcium exists free in

the cytosol when buffers bind calcium tightly. Conversely, when buffers bind calcium

loosely, more calcium is free. The concentration of total cytosolic buffer has been calcu-

lated to be 100–410 mM (Allbritton et al., 1992; Milner et al., 1992; Klingauf and Neher,

1997). Some measurements indicate that in the cytoplasm, 99 out of 100 calcium ions are

bound by mobile and immobile factors (Neher and Augustine, 1992; Tse et al., 1994).

Fluorescent calcium indicators are used to visualize calcium dynamics. These chelating

agents act as additional buffer. The use of fluorescent calcium indicators can affect the

dynamics we are studying by changing the speed, rate, or amplitude of the calcium

patterns. This was seen in the work of Nuccitelli et al. (1993) with Xenopus oocytes

where exogenous buffers altered the speed of calcium waves. The introduction of the

fluorescent indicators is the introduction of an exogenous buffer to the biological system.

Thus, fluorescent indicators become an important parameter to take into account when

creating models of experimental studies.

7.2.3 Influx of Calcium to the Cytosol

Cytoplasmic calcium levels increase in response to receptor signaling, nerve pulses, or

fertilization events due to calcium influx through channels at the plasma membrane or

calcium release from organelles. The dominant mechanism of calcium influx to the cyto-

plasm is dependent on the nature of the stimulatory signal. In neuroblastoma cells, increases

in calcium can be seen as early as 10 seconds. Yet, influx of calcium through plasma mem-

brane channels occurs after �30 seconds (Iredale et al., 1992). The early rise in calcium is

believed to be due to the release of calcium from internal stores. In this chapter, we focus on

release of intracellular calcium from the endoplasmic reticulum. The mechanisms for this

release include InsP3-stimulated calcium release from endoplasmic and sarcoplasmic reti-

cula via InsP3 receptor channels and calcium leakage (Fig. 7.3).

7.2.3.1 InsP3Channel–MediatedCalciumRelease InsP3, the secondmessenger

generated downstream of G protein receptors via phospholipase C action on

PIP2 (phosphatidyl-1,4 bisphosphate), regulates the release of calcium from reticular

stores (Berridge and Irvine, 1984; Berridge, 1993). InsP3 binds to a tetrameric

InsP3-receptor (InsP3R) that is also a calcium channel in the membranes of endoplasmic
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and sarcoplasmic reticula (Bezprovanny et al., 1991). The InsP3-receptor channel is both

activated and inhibited by calcium. In order for the channel to open, calcium cannot be

bound to the inhibitory site of the channel, while the activation sites must have bound

InsP3 and calcium. The probability of channels being open increases as calcium concen-

trations rise to 0.25 mM and decreases at higher concentrations when activating levels of

InsP3 are present and the calcium inhibition site is likely to be bound (Bezprozvanny

et al., 1991; De Young and Keizer, 1992). No ryanodine-sensitive receptors have been

identified in the neuroblastoma cell (Wang et al., 1995).

7.2.4 Spatial Distributions

A particularly important feature of calcium dynamics is the role of cellular structures and

diffusion in the generation of cellular calcium patterns. In our previous chapters on cell

Figure 7.3 Calcium influx. Schematic of molecular mechanisms responsible for influx of calcium to

cytoplasm. Calcium travels down the concentration gradient through activated calcium channels in the

plasma membrane. InsP3 receptor channel in the endoplasmic reticula releases calcium when calcium

and InsP3 are appropriately bound.
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cycle (Chapter 6) and metabolism (Chapter 5), we focused on the modeling of kinetic

reactions in the absence of space. In other words, our differential equations and rates

only took into account time and assumed that the concentrations of substrates and products

were homogenous in space. However, calcium dynamics are characterized and influenced

by complex and diverse spatial patterns.

Spatial characteristics of cells can influence the calcium dynamics. Diffusion rates of

InsP3 and calcium have been hypothesized to act as factors determining wave propagation

(Jaffe, 1983, 1991; Meyer et al., 1988; Parker and Ivorra, 1990; Lechleiter et al., 1991;

DeLisle and Welsh, 1992; Wang and Thompson, 1995). In some cases, it appears that

calcium diffusion is the dominant determinant and in other cases the determinant is

InsP3. Diffusion is a spatial characteristic of the molecule within the 3D environment.

We can characterize the spatial patterns of calcium in terms of where it initiates and

what direction within a 3D space the changes travel. The 3D environment is the cellular

architecture, which includes the overall geometry of the cell, distribution of organelles,

and molecular species.

7.3 EXPERIMENTAL SYSTEM MODEL

The work of Fink et al. (2000) was chosen as our example system because they suc-

cessfully use a computer model to generate experimentally testable hypotheses and

have a breadth of support materials available on tutorial pages of the Web site for

Virtual Cell (http://www.vcell.org). The tool, wealth of quantitative data, and resource

materials provide a rich biological case study with which to work. The challenge for

Fink and for us is organizing the preexisting knowledge of the biological system

into wellstructured relationships and mathematical descriptions that can be used to

simulate experimentally testable results. In this chapter, we examine, InsP3-mediated

calcium patterns in a neuroblastoma cell line, N1E-115, as modeled with and

without spatial factors.

In the following studies, we examine hypotheses about the mechanisms required for

InsP3-mediated signaling in the neuroblastoma cell. These hypotheses are embodied

in the computational model that is developed and constrained based on benchtop

experiments. The results support the proposal that InsP3 distributions and kinetics are

determinants of calcium patterns in neuroblastoma cells. Fink et al. (1999b, 2000)

hypothesized that temporal and spatial patterns of InsP3 concentrations dictate the

pattern of calcium release and subsequent temporal and spatial patterns of cytosolic

calcium.

The researchers developed a quantitative model of the known and estimated character-

istics of InsP3 and calcium biology. These were used to test the hypothesis that enzyme

kinetics and initial concentrations of the molecular components are sufficient to generate

InsP3 and calcium temporal dynamics. To explicitly explore the relationship between

cellular morphology, diffusion, and calcium patterns, the computational model was

modified to include spatial characteristics of the cell as an explicit spatial model. The

initial models assumed proportional distribution of molecular species in the cell. A third

hypothesized model developed by Fink includes experimentally determined spatial distri-

butions of organelles and species that were found to be nonhomogenous (Fink et al., 2000;

Slepchenko et al., 2003).
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The noncomputational model that we build identifies the cellular processes involved

in the biological behavior; defines the kinetics of the processes (rate equations); obtains

parameter values for the components, concentrations, diffusion coefficients, rate constants

for the rate equations; and defines topological features. The computational model

implemented in Virtual Cell is validated by its ability to quantitatively reproduce

experimental results and to predict experimental results that had yet to be performed.

The two models we create in the next pages are slightly simplified versions of the ones

published in Fink et al. (2000). We use simplified models such that we can focus on the

construction of the biochemical reactions and the introduction of spatial features.

Instead of creating the third model of Fink, we will discuss the model that can be found

in the Virtual Cell database.

We will develop a noncomputational model for the intracellular mechanisms and

reactions of calcium dynamics specific to the neuroblastoma cell type. This will include

a set of system statements—the components and relationships between factors in terms

of kinetic reactions. We then use Virtual Cell to implement the model and examine the

role of spatial distributions on the simulation and understanding of calcium patterns.

7.3.1 Calcium Biology in the Neuroblastoma Cell

Cultured neuroblastoma cells that are bathed in saturating concentrations of the nonapep-

tide bradykinin, initiate a calcium wave in the center of the neurite that moves as a single

bidirectional wave toward the soma and distal neurite (Fig. 7.4). The calcium release is

mediated by activation of InsP3 signaling and release of calcium from ER stores. Two

to three seconds after bradykinin stimulation, calcium concentrations, measured from

any location in the cell by fluorescence ratios, spike from 50 nm to 1000 nm in 1

second. The spike is followed by a gradual decrease in concentration.

Because we are specifically modeling InsP3-mediated calcium dynamics within the

neuroblastoma, our model is based on the biology of this cell (Fig. 7.5). The presence

of InsP3 and intracellular calcium release machinery (InsP3R) in this cell type was

identified by Surichamorn et al. (1990). InsP3-mediated calcium release from intra-

cellular stores occurs within the first 30 seconds after stimulation with bradykinin in

N1E-115 cells. The maximal calcium release from internal stores occurs within the first

20 seconds. No measurable influx of calcium through calcium channels in the plasma

membrane occurs within this time (Iredale et al., 1992; Mathes and Thompson, 1994).

By simulating the system within the first 20 seconds after stimulation, we monitor

calcium release from intracellular stores and do not need to include calcium

influx through the plasma membrane (PM). Intracellular stores of calcium in the neuro-

blastoma cell are located in the ER and mitochondria. Mitochondria do not contain

InsP3 receptors, and calcium release from these stores under bradykinin stimulation

within the first 30 seconds has yet to be demonstrated. We will therefore leave them out

of the model.

The effects of bradykinin stimulation on release of calcium from ER stores are attri-

buted to InsP3 actions (Reiser et al., 1992; Ziche et al., 1993; Mathes and Thompson,

1994). Therefore, we will model InsP3 production but not model the specific mechanism

of bradykinin stimulating InsP3 production. The experimental system uses the calcium

indicators as part of the experimental method to measure calcium levels. Because these

act as biological buffers that affect the concentration and dynamics of free calcium, we

will include the calcium indicator, fura-2, in the model.
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Figure 7.4 A single NIE-115 cell loaded with Fura-2 and treated with 500 nm BDK to visualize changes

in concentrations of cytosolic calcium. Images were captured with confocal microscopy at second time

intervals; representative images shown over course of 12 seconds. Concentrations of calcium were

measured in two locations: midneurite and soma. The insert shows measured concentrations plotted

as a function of time for both locations. Note the increase in calcium concentration first at the neurite

(2.3 seconds) followed by the soma and distal end of the neurite (3.2 and 4.5 seconds, respectively).

BDK stimulation resulted in a maximum concentration of 1 mM within 4 seconds at both locations and

propagated as a single wave in both directions. (Reproduced with permission from Fink et al., Biophysi-

cal Journal 79:163–183, 2000.)
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The NIE-115 cell line retains many of the morphologic and physiologic characteristics

of in vivo neuronal cells (Richelson, 1979; Gill and Chueh, 1985). The nucleus is located

within a large cell body, soma, and the neurite is a cytoplasmic extension, similar in shape

to neuronal axons (Fig. 7.6). Geometrically, the neuroblastoma cell can be approximated

with a hemisphere to represent the soma, a split cylinder for the growth cone, and a disk for

the neurite (Fink, 1998).

7.3.2 System Statements

From our knowledge of the biological system, we can construct a set of statements that

describe both its components and the relationships among them. These statements

reflect what is known and accepted about the system based on the work of biologists

Figure 7.5 Calcium mechanisms of the neuroblastoma cell modeled in this chapter. Calcium efflux is

shown at the plasma membrane (PM) via a generalized plasma membrane pump. Endogenous (B) and

exogenous (Fura-2) buffers bind to cytoplasmic calcium. Uptake and release of calcium from the endo-

plasmic reticulum (ER) is mediated by the SERCA pump and InsP3 receptor channel, respectively. The

influx of calcium through the plasma membrane is not included because it does not occur in the time

frame of the simulation and is not included in the model.
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and biochemists. Although many complex statements can be made, simple statements

facilitate creating the mathematical model.

Calcium interactions:

1. Free cytosolic calcium binds to buffer: endogenous, and exogenous (Fura-2).

2. Free cytosolic calcium is transported into the ER via SERCA pumps.

3. Calcium is released from the ER through Ins3P receptor.

4. Free cytosolic calcium is removed from the cell via extrusion mechanisms in the

plasma membrane.

InsP3 and InsP3 receptor:

5. InsP3 is produced near the plasma membrane and is degraded in the cytosol.

6. InsP3 and calcium binding open the InsP3 receptor when it is not inhibited.

Calcium Dynamics The relationships identified in our statements indicate that calcium

transitions from one state to another. Statement 1 indicates that free cytosolic calcium (Ca)

binds to buffer and creates new calcium species, bound calcium (CaB, CaFura2). This is a

binding reaction. Statement 2: free cytosolic calcium is also moved into the ER. The move-

ment of a molecule from one physical compartment to another is referred to as a flux. The

reactions and fluxes identified in the first two statements are reversible; bound calcium

becomes unbound and ER calciummoves back into the cytosol. Statements 2 and 3 indicate

the molecular species mediating the fluxes. Calcium translocation between the cytosol and

ER is mediated by SERCA pumps (Statement 2) and InsP3 receptor channels (Statement 3).

These proteins participate in determining the rate of flow between calcium states.

Statement 4: Cytosolic calcium is removed from the cell via extrusion mechanisms in

the plasma membrane. We know from our previous discussions that there are two domi-

nant mechanisms for calcium to be extruded across the plasma membrane: Na/Ca
exchangers and ATP pumps. The overall rate of extrusion affects cytosolic calcium

dynamics. Because we are not focused on learning about the role and mechanics of

calcium extrusion at the plasma membrane, it is sufficient to include that calcium is

removed at a constant rate because of both molecular mechanisms. Therefore, the

Na/Ca exchanger and ATP pumps are merged into a single process represented by a

single flux rate (extrusion).

InsP3 and Receptor Activation Statement 5 indicates that concentrations of InsP3
change over time due to its rate of production and degradation. The production of InsP3
in this study is modeled by an immediate increase in InsP3 concentration with decay in

Figure 7.6 Fura-2 filled neuroblastoma cell illustrating the cellular shape. The N1E-115 cell has struc-

tural and functional similarities to neuronal cells, specifically, identifiable soma and axon (neurite).

(Reproduced with permission from Fink, Morgan, and Loew, Biophysical Journal 75, 1648–1658, 1998.)
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the production rate over time. InsP3 is degraded by cleavage or phosphorylation in the

cytosol (Wang et al., 1995). The rate of that degradation is dependent on the concentrations

of InsP3 and a rate constant that reflects the joint activity of cleavage and phosphorylation.

Statement 6: InsP3 receptors transition from inactive-closed channels to open channels

when calcium and InsP3 are appropriately bound (Ueda et al., 1986; Bezprovanny, 1991).

The InsP3 channel consists of four peptides with three binding sites. Two of the three

sites, one for calcium and the other for InsP3, behave as cooperative activators of the

channel. The third site, a calcium binding site, inhibits the channel. When calcium is

bound to the inhibition site, the channel is unable to open regardless of binding at the

activation sites. The fraction of receptors inhibited by calcium can be modeled as a

probability based on calcium concentrations (Keizer and De Young, 1992; Li and

Rinzel, 1994; Li et al., 1995).

7.3.3 What Are the Kinetics?

The overall concentration of calcium within the cytosol is defined by the set of processes

that involve calcium binding and translocation from one cellular location to another. This

can be written as the following sentence: The concentration of calcium over time is a func-

tion of the rate of release from the ER stores (input) and the rate of cytosolic calcium

binding to buffer, the rate of extrusion of through the plasma membrane, and the rate of

uptake into the ER (outputs). This statement can be rewritten as an ordinary differential

equation:

d½Cacyt�

dt
¼ rate of release� (rate of bufferingþ rate of extrusion

þ rate of ER uptake)

Similarly, the change in concentration of InsP3 can be stated in a sentence as: The change

in concentration of InsP3 over time is determined by the rate of its production minus the

rate of its degradation. The differential equation then can be written as follows:

d½InsP3�

dt
¼ rate of production� rate of degradation

Each of the processes in the differential equation can be described as a rate equation.

The rate equation describes the speed at which the process occurs given the concen-

tration of the species and the molecular mechanism of the process. Importantly, each

reaction rate is its own hypothesis on the mechanics of the process. As such, each

kinetic rate equation has its own assumptions or rationale. We walk through each

reaction in the model to make the choice of kinetic reactions visible. The rationale

for each kinetic type may have been established in previous biochemical research or

may be an estimated assumption. The next section is useful for obtaining an under-

standing of the basis for the kinetics. When one creates models, one will provide

one’s own set of justifications, assumptions, or rationale for why a particular kinetic

model is appropriate for the cellular process. It is possible to skip this section and

look at the composite table of equations and parameter values provided in the Appen-

dix. The composite table is similar to many differential equation and parameter tables

provided in modeling literature.
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7.3.3.1 Calcium Kinetics

BINDING BUFFERS The reaction between cytosolic calcium (Ca) and endogenous and

exogenous buffers (B, Fura2) to produce bound calcium (CaB, CaFura2) is reversible

and can be modeled as mass action kinetics (Table 7.1). The numerical value for these

rates are determined by the relationship to the equilibrium constant Keq.

FLUXES The uptake of calcium from the cytosol to the ER through the SERCA pumps,

release of calcium into the cytosol through the InsP3 receptor, and extrusion from the

cytosol to the extracellular space are all fluxes. A flux by definition is the movement of

mass across an area. This describes the movement of molecular species across the mem-

brane. Fluxes, like reactions, can be described by different kinetic types.

CALCIUM EXTRUSION AT PM The extrusion of calcium from the cytosol is mediated by pumps

whose dynamics can be modeled here as general mass flux. General mass flux describes

the unidirectional movement of a molecule through a membrane’s surface area as pro-

portional to the transported molecule’s concentration. The pumps are represented by a

rate constant (k) that is derived from their combined average peak flow rate. The rate of

transport in our model is also dependent on the concentration of calcium being above a

threshold (0.2) and the amount of calcium above the threshold. These are also taken

into account in the rate equation (Table 7.2).

CALCIUM INFLUX TO ER: SERCA KINETICS Flows mediated by InsP3 receptors and

SERCA pumps may be best described by more complex equations than mass flux. The

activity of the SERCA pumps and InsP3 receptors are best described by Hill-type kinetics

that take into account cooperative affects of calcium on the rate of uptake by the pump (Gill

and Chueh, 1985; Lytton et al., 1992). Generically, Hill-type kinetics follow the form:

Vmax

S½ �
n

S½ �
n
þKn

d

where S is the substrate concentration, Kd the dissociation constant, and n the cooperativity

coefficient. For the SERCA pump, in relation to calcium, we can write the reaction rate as

in Table 7.3. Jmax is used in place of Vmax to indicate the flow across a membrane.

CALCIUM RELEASE FROM ER: InsP3R KINETICS InsP3 receptor peptides have three binding

sites: one calcium site that inhibits channel function and two other sites (one calcium,

TABLE 7.1 Rate of Ca Binding and Release of Buffer

Rate equation kon[Ca][B]2 koff[CaB]

where Keq¼
koff
kon

TABLE 7.2 Rate of Ca21 Extrusion Cytosol to Extracellular Space

Rate equation k([Ca]2Ca Threshold)([Ca] . Threshold)
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one InsP3) that cooperatively stimulate function. To include calcium and InsP3 binding as

factors in the activation of InsP3 receptors, we must explicitly include them in the kinetic

rate equation of the flux. The role of calcium and InsP3 as activators of the InsP3 receptor

can be modeled with a Hill coefficient for the two regulators.

The kinetic model in Table 7.4 describes calcium and InsP3 in terms of activators.

There is no representation of channels inhibited by calcium, which are an important

factor in the flow of calcium. Calcium inhibition of the InsP3 receptor can be

modeled as a probability factor, h (Fink et al., 2000) The factor h is determined by

the concentration of calcium, the rate of calcium binding to (kon) and release from

(koff) the inhibition site. Therefore, the numerical value of h at any given time is a func-

tion of the concentration of cytosolic calcium (Ca) and the dissociation constant of

calcium to the InsP3R inhibition site. This is described as a reaction between Ca and

h in Table 7.5.

To reflect the affect of calcium inhibition on the rate of channel opening, we modify the

previous Hill coefficient reaction (Table 7.5) to include the probability factor, h

(Table 7.6).

7.3.3.2 InsP3 Reaction Kinetics The rate of InsP3 production in response to brady-

kinin stimulation was unknown and needed to be estimated. It was known that the rate of

InsP3 production decays over time. Therefore, it was decided to model InsP3 production as

an initial rate (JInsP3
) with a decay function similar to radioactive decay (e2kt). Degradation

of InsP3 also occurs in the cytoplasm. The kinetics of this degradation will be modeled as

mass action with the degradation rate constant (Table 7.7).

TABLE 7.3 Rate of ER Update of Ca21

Rate equation Jmax

Ca½ �
2

Ca½ �
2
þK 2

d

TABLE 7.4 Rate of ER Release of Ca21

Rate equation Jmax

�
InsP3

�

�
InsP3

�
þ KInsP3

 ! �
Ca
�

�
Ca
�
þ Kact

 !" #3

1�

�
Ca
�

�
CaER

�

 !

TABLE 7.5 Probability of Inhibition Site Being Occupied

Rate equation kon(Kin �
��
Cacyt

�
þ Kin)

�h)

TABLE 7.6 Rate of ER Release of Ca21

Rate equation Jmax

½InsP3�

½InsP3� þ KInsP3

� �
½Ca�

½Ca� þ Kact

� �

h

� �3
1�

½Ca�

½CaER�

� �

TABLE 7.7 Rate of Production and Degradation of InsP3

Rate equation JInsP3
e2kt

Rate equation k(InsP3cyt2 InsP3init)
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7.3.4 Inclusion of Geometry and Diffusion

At this point in the chapter, we have a conceptual diagram of the biology, generated a set of

system statements, and have written rate equations for the kinetics of each process.

Together these define a continuous, open-system model of calcium dynamics that consists

of populations of molecular species that change over time. Despite describing the kinetics

of the calcium release, extrusion, and uptake, there is yet no explicit specification of space

or movement of molecules within the model. The movement of the molecules is concep-

tual. To explicitly take into account the movement of molecules within the cell, we need to

include the spatial properties of the cell. The spatial properties include descriptions of the

cellular geometry, molecular location, and movement.

GEOMETRY The shape of a cell can be described on a computer analytically, that is,

sphere, rectangle, hemisphere, or extracted from cell imagery. Tracing the surface of

cells within a single image generates a mathematical representation of the 2D cell

shape. A 3D version can be generated by tracing across a Z-series or stack of

images. A common approach to solving reaction equations within the geometry is to

generate a mesh. The mesh is a grid of x,y (2D) or x,y,z (3D) coordinates that

define the entire geometry. Reaction equations for the biochemical processes are sub-

sequently solved within each mesh cell. Molecules are assumed to be uniformly distrib-

uted within each cell.

LOCATION The cellular structures created in the concept map of the physiologic model

correspond with physical compartments within the cell. As such, cellular locations are

a compartment with characteristics of area and volume that contains species and

reactions as well as an object that has its own density distribution within the cell.

The distribution of molecules and organelles in space can be described as a density:

amount/volume. When the distributions are homogenous, the density factor for all

components is set to 1 (i.e., uniform). To vary the density of an organelle or molecular

species, we need only change the density factor. To take density into account as a

factor, species, we would add it both to the physiologic model and the rate equations

of membrane reactions and fluxes as a multiplier (see Appendix). We will see

that Fink et al. (2000) did this for their third model, which takes into account nonuni-

form distributions.

MOVEMENT Once the spatial model has been generated, diffusion of species can be modeled

by inclusion of diffusion coefficients that define the kinetics of how the species move.

Models of reactions that take into account diffusion are classified as reaction-diffusion

systems. Mathematically, reaction-diffusion systems require solving partial differential

equations. To write the differential equations ourselves, we would include a term for the

diffusion of soluble factors. For example, the initial differential equations for changes in

calcium concentrations over time would be rewritten to the following:

@ Ca½ �

@t
¼ Dr2 Ca½ � þ rate of release� (rate of buffering

þ rate of extrusionþ rate of ER uptake)
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The tool we have chosen to work with, Virtual Cell, creates the differential equations for

us. This makes it only necessary for us to provide the diffusion coefficient for the diffusing

molecules.

7.3.5 What Are the Initial Conditions and Parameters?

From our conceptual model and set of system statements, we can create a legend of vari-

ables and their associated parameter values. We use values derived from experimental data

to set the initial conditions of the variables. The more experimental data we have on con-

centrations and binding constants, the more constrained and presumably better the rep-

resentation of the biological system will be in the model. For each variable, we write

what we know about its concentration and diffusion coefficients.

The pumps and channels that facilitate the movement of calcium through the cell

have characteristic maximum rates of transport in addition to binding constants for the

carrier molecule or ones by which they are regulated. Ideally, all of the parameters

come from the same biological system and experimental results. The numerical value

for the initial rate of InsP3 production (JInsP3
) upon stimulation and the rate constant for

InsP3 decay (k) were unknown parameter values. The authors therefore explored a

range of parameter values to determine which combination would reproduce the obtained

experimental values for cellular concentrations of InsP3 after bradykinin stimulation (Fink

et al., 2000).

Modelers turn to the literature to draw on what biophysicists and biochemists have

already determined about how channels and pumps function (Gill and Chueh, 1985;

Lytton, 1992; Wang et al., 1995; Herrington et al., 1996; Miyawaki et al., 1997; Meldolesi

and Pozzan, 1998). We will use the same values reported by Fink et al. (2000) (Table 7.8;

Appendix). The complete set of parameter values, initial conditions, and equations have

been combined in the Appendix as a single reference for creating the numerical model

within Virtual Cell.

TABLE 7.8 Initial Condition and Parameter Values of Model

Molecular Species Initial Conc. (mM) Diffusion Coeff.

InsP3_init
b 0.16 283

Ca2þ

External 2000

ERc 400

Cytosolb 0.05 220

Buffer

Total exogenous (Fura-2)a,b 75.0 50

Total endogenousa,b 450

Cytosolb 0.05

Probability (h) 0.8

Fixed species 1 (no unit)

InsP3R 1

SERCA 1

aThe total amounts of buffers are distributed between bound and unbound states at equilibrium. The equilibrium values

are used for the initial concentrations; see Appendix.
bFink et al. (2000).
cMiyawaki et al. (1997); Meldolesi and Pozzan (1998).
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7.4 MODELING CALCIUM DYNAMICS WITH VIRTUAL CELL

We have identified all aspects of our mathematical model: factors, reactions, rate equations,

and parameter values. To complete this as a computational model, we enter the model

features into a computational framework that can create and solve the necessary ordinary

and partial differential equations. In this chapter, we use Virtual Cell to develop, based on

our model features, the appropriate ordinary and partial differential equations needed to

model temporal and spatial characteristics. We will not explore in the context of this

chapter the details of solving partial differential equations, but rather note that the inclusion

of space creates a computational challenge requiring modeling software that can solve such

equations. Virtual Cell is designed to represent cellular systems. It enables cell biologists to

use familiar terminology, concepts, and imagery to develop complex models of cellular

systems.

Detail 7.1
Virtual Cell is a simulation tool that runs from a remote server. It is accessible via Java

applets that enable one to access and run the software from any computer with the

appropriate Java runtime installed (currently JDK 1.3) and connected to the Internet.

In order to use the tool, one must create a user login and password. Login instructions

are present at the site (http://vcell.org/login/login.html).

The case study we are about to complete with Virtual Cell compares three simulations

of calcium dynamics. The first model is a simulation of a compartmental model that

assumes a single, well-mixed pool of reactions that does not take space into account.

The second model applies the same set of reactions to the spatial dimensions of the neuro-

blastoma cell, and the third takes into account the nonuniform distribution of cellular

machinery within the cell. This parallels the work of Fink et al. (2000) and will allow

us to see how the inclusion of spatial features can affect our understanding of the mech-

anisms involved in cellular calcium dynamics. The text below describes the creation of

the first two models. The results of the third model are taken from the original model,

which is stored as a shared model in the Virtual Cell (http://vcell.org).

7.4.1 Using Virtual Cell

Virtual Cell has three main databases: BioModel, MathModel, and Geometry. We will be

creating a BioModel that will be stored in the BioModel database and accessing

images within the Geometry database that will be associated with the BioModel. A Bio-

Model consists of a physiologic model, applications, and simulation results (Slepchenko

et al., 2003). The physiologic model contains the icon and math-based description of

the cellular structures, membranes and cellular compartments, molecular species, and

reactions and fluxes. Applications contain the experimental conditions for the model

simulation including spatial models and simulation results. The Geometry database

stores personal and shared image files. The created or imported image files define the

spatial topologies in which reactions occur, making spatial models. These can be analytic

1D, 2D, or 3D shapes—spheres, circles, squares—or images of cell outlines. MathModels

are for users who want to create their models by directly writing the mathematical

equations and initial conditions. The published models of Fink were written as MathMo-

dels. As such, the authors could directly simplify equations and combine terms within the
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differential equations. The differences between BioModel and the original MathModels

developed by the authors lay within the representation of parameter values and conversion

factors. In the following pages, we use the BioModel interface and an image stored in the

Geometry database to create our computational models.

7.4.2 BioModel Workspace

Virtual Cell opens to the BioModel workspace where we create the “Physiology” of the

model. Here we use icons to add and name the cellular structures and molecular

species. Adding a cellular compartment creates a membrane, interior and exterior location.

Any features added to a BioModel must be named. Names are assigned to the membrane

and the interior compartment. For our model, we add one compartment for the cytosol

with plasma membrane (PM) and add two more circles within the first compartment to

create the ER with ER membrane and the nucleus with nuclear envelope (Fig. 7.7).

Figure 7.7 (a) Virtual Cell physiology workspace showing the dialogue box for creating cellular struc-

tures. (b) Cellular structures included in our model are the plasma membrane (PM), cytosol; nuclear

envelope (NuE), nucleus; endoplasmic reticular membrane (ERM), endoplasmic reticulum (ER). (c) Dia-

logue box for creating species. Species are named and the context name is generated. (d) Cytosolic

species included in our model are shown.
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Detail 7.2

Creating Cellular Compartments

Place a circle for the cellular compartment in the workspace by selecting the membrane

icon and clicking once within the workspace. A name box appears with fields for the

“Feature Name” of the interior space, cytosol, and the “membrane” name, PM

(Fig. 7.7). The process is repeated to create the ER, nucleus, and their associated

membranes.

Create one compartment for the cell (cytosol, PM)

Create two more compartments within the cytosol

One for nucleus, nuclear envelope (NE)

One for ER, ER membrane (ERM)

7.4.2.1 Species We add molecular species, components, to the cellular compart-

ments and structures. Icons of species serve as conceptual aids for discussion, notation

for what is in the model and factors in our reactions and fluxes. Species are named as

they are added to the model workspace. The common name one gives the species is

used by Virtual Cell to generate a context name (Table 7.9). The “context name” combines

both the common name and the name of the compartment in which the species is located.

The contextual name uniquely identifies a name for the species state. The “formal name” is

the name by which one may find this molecule in literature. The “common name” is how

the molecule will be identified in the model. DBlink allows one to identify the species as

equivalent to other species that already exist in the Virtual Cell database. Although not

required in order to create a model, it does make it possible for one to search the

Virtual Cell database for public models using the same species.

We add species for each component of the model in their respective cellular locations.

In the cytosolic compartment we add species for calcium (Ca), endogenous buffer (B),

exogenous buffer (Fura-2), calcium bound to buffers (CaB, CaFura2), and InsP3.

Calcium is also added to the ER and extracellular space. The SERCA Pump, InsP3 receptor

channel, and probability are added to the ER membrane.

TABLE 7.9 Species Names in Virtual Cell

Formal Name Given Name Generated by Virtual Cell Location

Calcium Ca Ca_Cytosol Cytosol

Buffer B B_Cytosol Cytosol

Bound calcium CaB CaB_Cytosol Cytosol

Fura-2 Fura2 Fura2_Cytosol Cytosol

Fura-2 bound CaFura2 CaFura2_Cytosol Cytosol

Inositol triphosphate InsP3 InsP3_Cytosol Cytosol

Calcium Ca Ca_ER ER

SERCA SERCA SERCA_ERmembrane ERmembrane

InsP3R InsP3R InsP3R_ERmembrane ERmembrane

Probability h h_ERmembrane ERmembrane

Note: Naming conventions used in original papers have been retained for clarity in comparison of chapter to

revised paper.
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Detail 7.3

Adding Species to the Physiologic Model, Calcium Example

To create calcium in the cytosol, select the species icon and click inside the cytosol.

Enter a name for the species in the dialogue box that appears (Fig. 7.8). For example,

the formal name of calcium is calcium. Its common name is Ca. The context name

created by Virtual Cell will be Ca_Cytosol.

To add the same species to multiple compartments: Right click to open the edit

menu. Select copy. Move to the desired compartment. Right click for the edit menu

and select paste. Virtual Cell creates the appropriate context name for the species.

Calcium in our model is added to three compartments (external, cytosol, and ER).

7.4.2.2 Reactions and Fluxes Reactions between species or fluxes that move

species across membranes between compartments are features of each cellular structure.

“Reactions” are characteristic of compartments, for example, cytosol or membranes

(e.g., plasma membrane), and “Fluxes” are specific to membranes. Reactions and fluxes

Figure 7.8 The kinetics of reactions and fluxes are created using Reaction editors. Reactions and

fluxes are properties of the cellular structures. (a) and (c) Accessing reaction and flux editors of cellular

structures, cytoplasm, and ERM, respectively. (b) The reaction workspaces for cellular compartments.

(d) The workspace for membranes. (b) and (d) Species added in the Physiology workspace are visible

in the windows.
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are created within reaction editors of the selected compartment (Fig. 7.8). These editors

are titled “Reactions for structurename.” The editors differ in appearance for compart-

ments and membranes. However, the process for creating reactions and fluxes are

nearly identical. Both are associated with a cellular structure, given names, and linked

to species and assigned kinetic types.

Reactions The reactions are created and edited through the Reaction editor “Reactions

for structurename,” (e.g., “Reactions for Cytosol” Fig. 7.9). The reaction editor is used to

assign a name, define participating species, and assign kinetics. In the “Reactions for

Cytosol” window, we find a tool pallet for constructing reactions. Reactions are

created by linking participating species to a reaction icon. For example, we draw lines

between the reaction icon for endogenous buffering, the reactants (Ca_Cytosol,

B_Cytosol) and product (CaB_Cytosol) to create the binding reaction of calcium to

endogenous buffer. Repeating this process for all reactions in the appropriate com-

partments (Table 7.10) completes defining the components and relationships of our

physiologic model.

Figure 7.9 Reaction editors. Reactions are defined by double-clicking the “reaction” icon to access the

Reaction editor. Select the kinetic type and enter the appropriate rate equation in the expression field.

See Appendix or tables in the chapter for equations.

140 CALCIUM DYNAMICS

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


Detail 7.4

Adding Reactions and Reaction Kinetics to Compartments

Select the structure in which the reaction takes place. Right click to access the dialogue

box containing “Reactions” (Fig. 7.8). Select “Reactions.” A window titled “Reactions

for structurename” (i.e., “Reactions for cytosol”) will open.

Select the bar-bell styled reaction icon . Add it to the compartment.

Next link the reactants and products to the “Reaction” icon to signify those involved

in the reaction, that is, product (CaB_Cytosol), reactants (Ca_Cytosol, B_Cytosol), or

catalyst. The relationships of species to reactions are defined by drawing lines from the

species to the reaction icon. Three names appear as the line is drawn: “reactant,”

“product,” and “catalyst.” These categories define the role of the species in the chemi-

cal reaction. Reaction editors are used to define the rate equation for each reaction.

Double click the “Reaction” icon to access the Reaction editor.

The chemical reaction is shown in the editor as a schematic with substrates (left of

arrow), catalysts (above arrow), and products (right of arrow). From the Kinetic Type

menu, select the type of kinetics that governs the reaction. The rate equation is entered

into the “Expression” field and the parameters (e.g., Km, vmax, etc.) of the equation

appear as a list. Any new symbol or text character(s) entered in the expression field

is treated as a new parameter in the reaction and added to the parameter list.

To define the kinetics of the interactions, we use the Reaction Kinetic Editor to

assign rate equations to each reaction we created. Reaction Kinetic Editors contain a

chemical reaction diagram with reactants to the left (Ca_Cytosol, B_Cytosol), products

(CaB_Cytosol) to the right (Fig. 7.9), and any catalyst above the arrow. “Catalyst” is a

species that participates in the reaction but is neither substrate nor product. Enzymes,

pumps, and channels are most often catalysts. We choose the type of kinetic reaction in

the reaction editor. The kinetic type tells the software how to relate mathematically to

the reactants, products, and catalysts in the reaction. The reaction drawn in the “Reactions

of Compartment” editor and the selected kinetic type are used to identify variables and

parameters. The kinetic type for the reactions in our model is “General.” The rate

equations we defined previously for each reaction are written into the “Expression”

field. The syntax used in the expression field is similar to writing equations within

Excel. The syntax for each rate expression we use has been provided in the Appendix.

TABLE 7.10 Location of Reactions and Fluxes in Cellular Structures

Reaction/Flux Cellular Structure

Calcium extrusion Plasma membrane

InsP3 generation

Calcium binding to Fura-2 Cytosol

Calcium binding to endogenous buffer

InsP3 degradation

Probability of occupied InsP3 calcium

inhibition site

SERCA uptake of calcium ER membrane

InsP3 receptor release of calcium
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Flux Creating fluxes is generally identical to creating reactions: add flux icon, name

flux, identify participating species, and define kinetics (Fig. 7.10). There are two features

that becomeobviouswhileworkingwith theflux tool. In reactions,weuse line tools to identify

participating species as substrate, product, or catalyst. In fluxes, drawing a line between

species and the flux icon defines the species only as a catalyst. Transported species

are specified through the flux editor, and the lines are generated for us. It also becomes

noticeable that the arrows represent a flow through the membrane, but not the directionality

of the flow. The actual direction of the flow is determined by the rate equation as it is

written in the rate expression. At the plasma membrane and ER, calcium is moved out of

compartments. If we were drawing this by hand, we would probably draw the arrows from

right to left to indicate directionality. In Virtual Cell, they are drawn left to right, and the

actual direction of the flow depends on the balance between positive and negative terms in

the equation. This is true for both fluxes and reactions.

Detail 7.5

Adding Fluxes to Membranes

Fluxes are added to membranes in a similar manner as reactions are added to

compartments.

Figure 7.10 Flux editors like Reaction editors are accessed by double-clicking the “Flux” icon. Trans-

portedmolecules (calcium) and rate equation are entered in this window. Catalysts are added by drawing

linkages to the “Flux” icon after the flux is created in the Reaction editor.
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Select the PM membrane, right click and select “Reactions” from the menu that

appears (Fig. 7.10). A window opens that shows three columns. Each column represents

a compartment for the external space (left), membrane (middle), and internal compart-

ment (right). Any species that have already been added to the model are visible in their

respective compartments. To add a reaction, select the “Reaction” icon, add it to the

center field, and define the reaction by linking species.

To add a flux, select the flux icon and click in the middle column to add it to

the membrane. The Flux editor dialogue box opens immediately.

Click the “Rename” dialogue box and enter the name of the flux (i.e., extrusion or

SERCA). The “flux carrier” is the species to be transported. Change the flux carrier to

the appropriate species (e.g., Ca). We leave electric current unchecked because we are

not examining the effects of current on the system. Select the Kinetic Type for the flux

(e.g., General Mass Flux).

7.4.3 Application Pallet

The physiologic model created in the BioModel Workspace identifies variables, para-

meters, and reactions of the system based on diagrams familiar to biologists. In order

for the model and simulation to be complete, we must relate these features, equations,

and dynamics to parameter values and a spatial description. The Application Pallet is

the tool used to put the physiologic model together with initial conditions, active reactions,

and any selected geometry. The Application Pallet contains five function tabs: “Structure

Figure 7.11 Application Pallet interface provides tabs for completing the computational implemen-

tation: “Structural Mapping,” “Initial Conditions,” “Reaction Mapping,” “Electrical Mapping,” “Simulations.”

The Application Pallet opens to the “Structual Mapping” window.
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Mapping,” “Reaction Mapping,” “Initial Conditions,” “Electrical Mapping,” and

“Simulations” (Fig. 7.11). Because we are not working with membrane potentials or other

electrochemical reactions,wewill not use “ElectricalMapping.”Eachapplication, “Compart-

mental” and “Uniform,” we create in this chapter, differs in its configuration of the structure

map or initial conditions. Each uses the same physiologic model.

Detail 7.6

Application Pallet: New Applications

In the Application window, select the BioModel icon. Right click to access the “Create

New Application” menu. Name the application “Compartmental.”

7.4.3.1 Structure Mapping The “Structure Mapping” tool is the user interface for

applying the physiologic model to selected geometries. The diagram of the physiologic

model is shown in theGeometry editor and used tomap relationships between cellular struc-

tures in the diagram and geometry. By default, the model is mapped to a single point

(Fig. 7.11). The single point is a diagram representation of the compartmental model that

assumes the physiologic model reactions occur in a single, well-mixed compartment.

Each cellular structure created in our physiologic model, whether mapped to a geo-

metry or not, has two properties: surface volume ratio and volume fraction. The surface

volume ratio is the ratio of the surface area to volume of a compartment. We know for

instance that the ER has a high surface-to-volume ratio because of its intricate folding,

whereas the cell itself has a lower ratio. The volume fraction is the fraction of total cell

volume occupied by the structure (Table 7.11).

The volume fractions are important for compartmental models because the units for

concentrations in the simulations are mass/volume. Fluxes are defined as mM/mm2,

which are converted to micromolar concentrations as the molecules enter nonmembrane

structures. When species move from one structure to another, the volume fractions and

surface-to-volume ratios are used to determine the appropriate conversion factors for

the reaction.

The conversion factors are defined by the software based on the volume ratios and

volume fractions entered by the user. They are applied to the rate equations of the mem-

brane fluxes where molecules move from one compartment and structure to another.

Because the conversion factors are applied to all terms of the rate equations, to keep

TABLE 7.11 Spatial Ratios of Cellular Compartments

Structure Surface Volume Volume Fraction

Extracellular

Cytosol 0.263 0.5

ER 20 0.15

Nucleus 1 0.2
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the same rate constants for the enzyme kinetics found experimentally and used in the orig-

inal MathModel, the numerical value of the rate constants must be recalculated to retain

the experimentally defined values.

Highlight 7.1

Flux Conversions

The flux conversion for a membrane to the volume it defines (e.g., ERM to ER or NE to

nucleus) is the surface-to-volume ratio (SurfToVol) (Eq. 7.1.1). When a cellular

volume (e.g., Cytosol) contains subdomains, ER and Nucleus, the volume fractions

of the subdomains are also taken into account (Eq. 7.1.2).

KFlux ERM ER ¼ SurfToVol ERM (7:1:1)

KFlux PM Cytosol ¼
SurfToVol PM

1:0� VolFract Nucleus� VolFract ER
(7:1:2)

KFlux ERM Cytosol ¼ SurfToVol ERM �
VolFract ERM

1:0� VolFract
(7:1:3)

Example: BioModel Conversion for SERCA Flux

BioModel Conversion: Rate Equation�Kflux_ERM_Cytosol

KFlux ERM Cytosol ¼ SurfToVol ERM �
VolFract ERM

1:0� VolFract

SurfToVol ERM ¼ 20 VolFract ERM ¼ 0:15 1:0� VolFract ¼ 0:85

Kflux ERM Cytosol ¼ 3:529412

Rate equation: Jmax

½Cacyt�
2

½Cacyt�
2
þ K2

p

Converted rate equation: Jmax

½Cacyt�
2

½Cacyt�
2
þ K2

p

� Kflux ERM Cytosol

Jmax ¼ 3500mMs�1Kflux ERM Cytosol ¼ 3:529412

Converted rate equation with adjusted Jmax: 991:666
½Cacyt�

2

½Cacyt�
2
þ K2

p

7.4.3.2 Reaction Mapping The “Reaction Mapping” window provides a list of all

the reactions and fluxes created in the model with options to turn reactions on or off

(“Enable”) or to make them very fast (“Fast”). When “Fast” is selected, we indicate

that the reaction is near equilibrium and that it occurs on a scale faster than its rate of diffu-

sion such as when diffusion coefficients are part of the reaction equations. For this set of

simulations, we make the calcium-buffer reactions fast (see Chapter 4).
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7.4.3.3 Initial Conditions Under the “Initial Conditions” (IC) tab, we see a list of

the species that we added to each compartment. Initial conditions are saved as part of

the application and therefore independent of the physiologic model. This allows us to

set up multiple scenarios without having to redraw the basic topology of the system.

We specify initial concentrations for each species and set it as fixed or variable

during the simulation (Fig. 7.12). Within our model, membrane proteins are fixed,

and the rest are variable. We can make a copy of the complete compartmental

model so that we use the same IC values in our spatial model, “Uniform.”

7.4.3.4 Spatial Models

Adding Geometries Spatial models are created by solving the biochemical reactions

within defined geometric shapes. Currently, the only identified geometry is the compart-

mental model, which has descriptions of volume fractions and surface area but no

explicit spatial features (Fig. 7.13). It is the well-mixed homogenous compartment

assumed for all ODEs and most enzyme kinetic models. Geometries are added to the

Application Pallet through the “View/Change Geometries” tab. We change the geome-

try by selecting the desired image files from the Geometry database.

Detail 7.7

Adding Geometries: Spatial Models

Highlight the Compartmental application. Right click to access the command menu and

select “Copy.” Name the new application: “Uniform.” In the new application pallet,

Figure 7.12 “Initial Conditions” tab of the Application Pallet lists all variables of the system. In spatial

models, the diffusion coefficient for soluble molecules is entered in the lower panel. Concentrations for

species that do not change throughout the simulation can be set to a fixed concentration value in this

window as seen for the transport proteins in the membrane and ER calcium concentration.
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click the “View/Change Geometry” tab. Select “Change Geometry.” This accesses the

Geometry Database and “Shared Geometry” folder. The geometry we will use is in the

folder “CellBioGuide.” Highlight and select the image file “NE-Full-Best_Geometry.”

This will update the structure mapping view with the geometry.

Resolving Structures

Use the line tool provided in the Application Pallet to draw a line from the “Physi-

ology” model structures to the squares that correspond to regions in the cell geometry.

As the line is drawn between the two images, the word “RESOLVED” will appear to

indicate that Virtual Cell has mapped the model compartment to the region in the cel-

lular geometry file. We do not resolve membranes in the models of this chapter.

The Geometry database view contains one’s image folders as well as folders of

images made publicly available by other users. A single image may be applied to

Figure 7.13 Changing geometries and duplicating models. The Application Pallet of the compartmen-

tal model is shown at left (a), the uniform distribution model at right (b). The “View Change” icon at the

base of the first two windows (a, b) is used to access the Geometry dialogue boxes (c). Once a geometry

is selected, it is added to the application.
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multiple BioModels. A model of RNA transport can be applied to the neuroblastoma

cell geometry as easily as the calcium dynamics model. Similarly, we can apply two

different geometries to the same physiologic model. Instead of examining calcium

dynamics in the neuroblastoma, we could examine them in oocytes that have a com-

pletely different geometry. The analysis of Fink et al. (2000) was done with a 2D

image of the neuroblastoma cell. The image associated with Fink’s publication is

stored in the geometry database as a public file that can be imported into one’s

own workspace. Each image file has information describing its dimensions and size

that is imported with the image.

Once the geometry is linked to the application, the cellular structures of the physiologic

model must be mapped to their corresponding regions in the image. This allows Virtual

Cell to map the volumes in the BioModel to the newly linked area and volume data associ-

ated with the image. Once these are mapped, the structures are said to be “resolved,” and

the volume fractions that we created in the compartmental model are replaced by the

Virtual Cell calculated volumes.

Diffusion To describe how molecules move through the spatial model, we assign dif-

fusion coefficients. Diffusion coefficients are a characteristic of individual molecular

species in their structural context and therefore assigned as part of the “Initial Con-

ditions” (Fig. 7.12). Not all of our variables diffuse; therefore a default setting of

0.0 for these molecules is appropriate. The diffusion values used in our spatial

model, “Uniform,” for InsP3, calcium, and fura2 are provided in Table 7.8.

7.4.3.5 Simulations The final step of creating an application is to set the simu-

lation conditions. In the “Simulations” tab, we instruct Virtual Cell how to solve the

mathematical model derived from the information already provided through the con-

struction of the “Physiology” model, the initial conditions, and geometries. This is

done by choosing an approximation method for the model, selecting a number of time

points to be sampled, and defining the resolution of the geometries mesh for spatial

simulations. The time it takes for the simulation to compute is affected by the number

of time steps that are taken and recorded, the resolution of meshes in spatial models,

and the approximation method. The approximation method is selected by Virtual Cell

based on the mathematical description generated for one’s model. The advanced settings

allow users to choose the integration method for solving the set of ODEs that describe

the model. The compartmental simulations discussed in this chapter use the Runge-Kutta

fifth order integration method. The approximation method for the spatial models is set by

Virtual Cell.

Detail 7.8

Application: Simulations Control, Edit

The simulation tab allows you to create simulations and manage simulation results

stored on the remote server. Click “New” to create a simulation. Click “Edit” to set

the simulation methods.

Use the “Parameters,” “Tasks,” and “Advanced” tabs to edit the default value for

parameters, time step, and integration method, respectively.
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Parameters: Change the rate constant values for InsP3 production (Js ¼ 17.73),

calcium extrusion (vmax ¼ 6.08), SERCA mediated uptake (vmax_SERCA ¼ 1.108),

and InsP3 receptor (991.6666).

For both models, the time length is 20 seconds. The time step for the compartmental

model is 0.1, and we keep every point. For the spatial models, use a time step of 0.001

and keep every 100th time point.

Running a simulation of a spatialmodel requires specifying amesh size for the geometry.

For the 2Dgeometry, themesh assigns a grid of x,y coordinates to the existing geometry. The

equations defining the behavior of the reactions are then solvedwithin each cell of themesh.

The mesh size sets the size of the cells. A mesh of 0.2 mm has a finer resolution than one of

0.5 mm. The resolution obtained from optical studies is 0.2 mm. This is a minimum resol-

ution that can be currently verified experimentally. The smaller mesh size also has a

greater number of cells. The smaller the mesh size, the higher the resolution, the greater

the number of cells, and the larger the number of computations required to solve the

entire model. The results of a simulation can be sensitive to mesh size, similar to ODE

approximations being sensitive to step size. The sensitivity of the model to mesh size can

be tested by examining the results obtained using two different mesh sizes. In the Fink

model and here, the 2D simulations were calculated within a domain of 7.7 � 103 and

mesh size of 1.2 mm. Simulation results are named and stored for one’s model and listed

in the simulation view.

Detail 7.9

Setting a Mesh

When developing a model, start with a coarse grid size (60 � 40), and once the model is

complete, increase to a finer resolution that may be more computationally intense

(185 � 55). This can save computer run time and allows one to assess the sensitivity

of the results to the mesh size.

7.4.4 Run and View Results

The previous pages stepped through creating one “Physiology” model and two appli-

cations to create two distinct complete models: “Compartmental” and “Uniform.” In the

following sections we will discuss the simulation results of these two models in relation

to the experiments and simulations performed by Fink et al. (2000). The third simulation

discussed in this section is the “Non-uniform” model. We do not create this application.

Instead, we will use the existing Fink et al. BioModel to examine the results obtained

when non-uniform distributions are taken into account. This third model is stored in the

BioModel Shared Folder, CellBioGuide.

7.4.4.1 Compartmental Model

Expected Results The compartmental model serves as our baseline simulation. This

simulation only takes into account the biochemical reactions of the model. It is possible

and often the case that when a model is initially constructed, it fails to work. The question

for the modeler is why? As a first order of business, check the parameters, initial
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conditions, and rate equations. It is fairly easy to create data entry errors with a physiologic

model of 8 reactions and more than 30 numerical values. The next check is on the behavior

of the rate equations. This is done two ways. First, we run a steady-state simulation to

determine if the set of equations can reach a steady state. Given the biological system

reaches a dynamic equilibrium, we expect to see a steady-state solution from the simu-

lation. For this model, steady state is assumed to be reached when no stimulus is provided

(Js ¼ 0). Next we can ask, do the changes in rates of reactions behave as expected?

Although it is not intuitive how a variable changes over time in the context of multiple

reactions, it is possible to have reasonable expectation for a single variable in relationship

to a single reaction. Examining the relationship of a reaction rate to a variable can help the

modeler determine whether it is behaving properly.

Some of the expected behaviors for the reactions in our model include the following:

Initial increase in InsP3 in the cytosol and subsequent decrease over time.

Decreased rate of InsP3 production and increased rate in InsP3 degradation rate.

Increase flux through SERCA pump as Ca_Cytosol levels increase.

Simulation Results To examine the behaviors identified above, we examine individual

variables against time or another variable within the plot view of the data viewer

(Fig. 7.14). For example, we can look at the change in concentration and rate of production

or degradation of InsP3 over time. We can also examine the change in SERCA flux in

relation to changes in concentration of Ca_Cytosol.

Detail 7.10

Simulation Results: View Data, Compartmental

The results of completed simulations are viewed by clicking the “Results” tab. The

relationship between any two variables can be plotted in the graph view. All data

can be viewed as a table by using icons to toggle between graph or table views.

Results can also be exported to a zip file.

In the experimental system, in vivo calcium levels increase 20-fold from 0.05 mM to

1 mM in the presence of 500 nM bradykinin (BDK) (Fink et al., 1999b). In Fink et al.

(2000), free cytosolic calcium reached a peak of 1.26 mM at 3 seconds in a simulation

with fixed time steps, a slightly greater than 20-fold increase. In our compartmental simu-

lation, we see calcium increase from 0.05 to 4.1 mM within a second (Fig. 7.15). This is

nearly an 80-fold increase in cytosolic calcium levels.

Detail 7.11

Simulation Results: View Data, Spatial

The geometry of the simulation is shown in the data viewer. Each image is a single time

point with the concentration of the selected variable at each x,y coordinate displayed.

A slider is provided to look at the concentration distribution at different time points
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for a variable. The color scale for concentrations is set automatically for each variable

based on the range of values obtained during the simulation and can be changed

manually.

From this simulation, our results appear far from both the initial simulation designed by

Fink and experimental data. If we examine the simulation “Parameters,” we can see that

the rate constants are the same values we assigned. They were not modified to take into

account the volume ratio conversion factors of the model. In order for the kinetic model

to describe the enzyme kinetics of the membrane reactions and fluxes, we must re-

calculate the rate constants (Appendix). We can “Edit” the rate constants within the par-

ameter view of the simulation control panel. This modifies the parameters without chan-

ging the BioModel or losing previous results. When we re-run the simulation with the

newly calculated rate constants (see Appendix), we obtain a calcium peak of 1.19mM

at 2.86 seconds (Fig. 7.16).

It was not possible to directly compare InsP3 concentrations in the model to those in

the cell because there was no experimental in vivo indicator for InsP3. Instead, the

average cellular InsP3 concentration after BDK stimulation was determined, 2 mM in

whole cells, and used for comparison. InsP3 levels in Fink’s simulation rise from the

Figure 7.15 Calcium (a) and InsP3 (b) concentrations over time in compartmental model simulation.

Calcium (a) and InsP3 (b) concentrations over time in compartmental model simulation with corrected

rate constants for Vmax, Js, and Jmax.

Figure 7.16 Calcium concentrations (a) and InsP3 concentrations (b) versus time for compartmental

model once correction factors are taken into account.
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initial concentration of 0.16 to 4.69 mM by 2.02 seconds (Table 7.12). When the uncon-

verted parameter value is used, the model reaches a peak concentration of 5.5 mM

in InsP3 within 2 seconds, whereas in the model with the converted rate constants,

InsP3 concentrations increase from 0.16 mM to the peak concentration of 4.69 mM

within 2 seconds. In both cases, the peak concentration is greater than the experimental

whole cell measurement of 2.1 mM that was taken at 10 seconds. The 10-second value

of the corrected simulations is lower than what was found in vivo.

Detail 7.12

Point Tool: Species Over Time

We use the point tool to look at data within a single location across time. This generates

a time plot. The data associated with the selected x,y coordinate is sent to a graphical

window where it can be viewed as a plot of values over time or as a table of values.

We can deduce from the initial compartmental simulations that the rate equations prop-

erly describe the behavior of their respective reactions, and InsP3 dynamics are modeled

sufficiently to match peak values in experimental results. Calcium dynamics showed

discrepancies between simulation and experimental values that were addressed by

taking into account the conversion factor for surface-to-volume and volume fractions.

Thus, the model re-creates at a macroscopic and quantitative level changes in variable

concentrations similar to what is seen in vivo.

7.4.4.2 Uniform Model Because the model above is a “compartmental” model that

does not explicitly model the cellular architecture, we do not have information about

where in the cell these peaks are reached. A more detailed examination of the relationship

between InsP3 and calcium dynamics would include a comparison between simulation and

experiments on the delay between peak calcium concentrations in neurite and soma in

TABLE 7.12 Comparison of Calcium and InsP3 Results from Compartmental Simulations

Species Source Peak (mM)

Time After

Activation (s)

Calcium (init ¼ 0.05 mM)

In vivoa 1.0–1.2 2–4

Original 4.1 0.9

Corrected 1.19 2.86

InsP3 (init ¼ 0.16 mM)

In vivoa 2.1 10

Original 5.5 2

Corrected 4.69 2

Corrected 1.84 10

aIn vivo experimental data reported in Fink et al. (1998, 2000).
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addition to the peak concentration values. Presumably, when this same model containing

the machinery and dynamics of the system are executed within the cellular geometry, we

will see propagation of the calcium wave similar to what we see in vivo: initiation at

the neurite within 2 to 3 seconds and propagation to the soma and distal terminal. To

test this, we examine the same physiologic model in the geometry of the neuroblastoma.

Although the physiologic model is the same, we will no longer be performing a compart-

mental model. The cellular structures defined in the physiologic model are now mapped

to geometric structures in the neuroblastoma image, and diffusion is enabled for the

molecules that have diffusion coefficients (i.e., InsP3, calcium, buffer, and Fura-2). We

are now solving a set of partial differential equations. The default assumption in our

spatial simulation is that molecules and structures are distributed uniformly throughout

the 2D space.

Data Viewing The “Data Viewing” tool for spatial simulation displays the geometry to

which the model has been applied. This provides a visual representation of the variable

values in the context of the 2D geometry. Data is available for every time point collected

during the course of the simulation. In addition to the default display of 2D space at a

specific time point, it is possible to export the simulation data into multiple formats

including movie formats. The movie files are helpful for obtaining a qualitative under-

standing of changes in a variable over time or in variables in relation to one another.

Quantitative values are more easily extracted from the default view or an exported

ASCII file.

Simulation Results We can now compare simulation and experimental results for

calcium and InsP3 dynamics within the soma and neurite (Fig. 7.17).

Experimentally, neurite spikes occur within 2.5 to 3 seconds after stimulation with

BDK. The lag between neurite and soma peaks is very short within a second (Fink

et al., 2000). In our simulated compartmental model, calcium levels initiated and

peaked first in the neurite followed by the soma (Table 7.13). The temporal lag

Figure 7.17 Two-dimensional simulation with uniform distribution of organelles and molecules

assumed. Results are presented in the data viewer with a scroll bar for scanning through temporal

slices in the upper left, a list of variables including fluxes and reactions, and the cell geometry at the

top center of the window. Data collection points were specified within the soma and neurite of the cell

with the point tool. Graphs were produced by choosing variables to monitor, calcium (a) and InsP3

(b), and selecting the “Show Time Plots.”
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between the calcium peaks in the neurite and soma was .5 seconds, more than a 10-fold

increase compared with experimental values. As well, the peak calcium in the soma was

less than what has been seen in vivo, which peaked at 0.62 mM versus the 1 mM in vivo.

The temporal and spatial increases in InsP3 preceded calcium increases in both the neurite

and soma. This is consistent with the hypothesis that InsP3 dynamics determine calcium

patterns.

Nonetheless, the model is still not consistent with experimental results. The

maximum calcium concentrations in the soma and neurite were lower than seen exper-

imentally, and although increases in calcium move from neurite to soma, there was a

significant change in the time it takes for the wave to move from neurite to soma.

Why? What may be responsible for the difference between the experimental results

and the simulation?

7.4.4.3 Non-uniform Because the simulation results did not reflect what we see

through experimentation, and we believe that the kinetic descriptions are accurate, we

can conclude that the previous implementation of the model is insufficient to explain

the spatial, temporal patterns seen in the cell. Fink et al. (2000) next hypothesized that

a non-uniform distribution of the molecular components was required for proper

TABLE 7.13 Calcium and InsP3 Results from Uniform Spatial Simulation

Location Species Peak (mM) Time After Activation (s)

Neurite in vivo Calciuma 1.0 2–4

Neurite InsP3 6.3 1.7

Neurite Calcium 1.01 3.7

Soma in vivo Calciuma 1.0 2–4

Soma InsP3 2.47 2.4

Soma Calcium 0.62 9.2

aIn vivo experimental data reported in Fink et al. (1998, 2000).

Figure 7.18 Diagram illustrating the method of Fink et al. for obtaining relative fluorescent intensities of

ER, SERCA, and InsP3R over the body of the cell. Fluorescence intensity of ER in the somawas taken to

be a value of 1. All other values were obtained relative to the soma. Values for each region are listed in

this figure.
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calcium dynamics. To test this, Fink et al. used data collected on the distribution of orga-

nelles and species. They evaluated the density of InsP3 receptors and SERCA pumps in six

regions that spanned the length of the cells (Fig. 7.18). Density was calculated by measur-

ing relative fluorescent intensities (r.i.), and the average density value per region was used

as a factor in model simulations (Fink et al., 1999b).

The ER density was found to vary across the length of the cell in a consistent fashion.

Density based on relative fluorescence ranged nonlinearly from 0.95 r.i. in the distal

neurite to 2.45 r.i. in the midneurite region. The molecular species, InsP3, and SERCA

pump were found to have the same relative fluorescent intensities as the ER within

which they are located. As such, Fink et al. added a single density factor to the ER mem-

brane (ER_density) and reactions. The third simulation we examine includes the geometry

of the cell, the distributions of the receptor, ER, pumps, and channels within the geometry,

and the biochemical reactions (Fig. 7.19).

Figure 7.19 The image of the “Physiology” model corresponding to the MathModel created by Fink

et al. (2000) was obtained by using the “Save as image” feature available within Virtual Cell. This

model was used to simulate non-uniform distributions within a spatial model. The species notation

has been retained in the image (Fura2B is CaFura2; BufferB: CaB; IP3: InsP3). Note the inclusion of

two species: ERDensity and 2Dcorrection. The Fink model includes reactions for leakage of calcium

across membranes. This is visible in the Application Pallet and has been disabled in the Reaction

Mapping view in order to make comparisons across the three models in this chapter.
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Spatial Models: Regions To assign region-specific values for the density factor, sub-

regions were defined relative to the cell geometry. Conceptually, the regions are specified

by coordinates based on the cell geometry, size, and point of origin. Fink et al. (2000) used

the coordinates to include a series of conditional statements in the IC expression field that

set the ER density to experimentally determine density values.

Simulation Results We can select the same coordinates to examine calcium and InsP3
concentrations in the Non-uniform model as in the Uniform application because they

use the same image file for their geometry. When we plot the simulation results of

the Non-Uniform Fink’s model, we can see that the concentrations of calcium reach

amplitudes of 1.0 to 1.2 in the neurite and soma, respectively (Fig. 7.20). Significantly

closer to the experimentally measured values. The temporal lag in calcium peaks

between the neurite and soma peaks are returned to 0.2–0.4 seconds versus the 4-

second lag seen in the previous simulation where distributions were not taken into

account.

7.5 CONCLUSION

A computational model is composed of a set of hypotheses. The inclusion of species

and the choice of kinetic types are each hypotheses about sufficient and required

factors and biochemical reactions. The factors and rate equations ideally are quantitatively

determined through experimental studies and used to reconstruct the system as a

computational model. As a set of hypotheses concerning what is sufficient to create the

Figure 7.20 Calcium (a) and InsP3 (b) concentrations in soma and neurite from spatial simulation with

nonuniformly distributed endoplasmic reticula and its associated membrane proteins. Graph data was

collected from the same location (x,y coordinates) within soma and neurite as the simulation with uniform

distributions.
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experimental results, the hypotheses are false when the model fails to re-create the biologi-

cal observations and true when results are re-created and future experimental behaviors

predicted.

Of the three models discussed in-depth, the model and accompanying experimental

studies most exemplify the process of quantitative cell biology (Slepchencko et al.,

2003). The experiments and model development are tightly coupled such that

simulation results that fail to re-create the quantitative behavior of the system drive

new experimental hypotheses, and quantitative experiments provide parameter

values and initial conditions that constrain and refine the behavior of the computational

model.

The series of studies examined in this chapter illustrate the successful use of model-

ing to develop better mechanistic understandings of a cellular process. We have

described the use of Virtual Cell in analyzing calcium dynamics. The models

we have created in this chapter are fairly complex. They take into account the

temporal and spatial dynamics of both calcium and InsP3. Each model is the imple-

mentation of the mathematical representation of components and the interactions

believed to be required and sufficient for calcium dynamics in response to bradykinin

stimulation.

The initial model failed to reproduce experimental results; the second model came close

but had significant discrepancies. The third model, which was refined further with

measured values for molecular distributions, reproduced the experimental results.

By linking biochemical reactions to models of cellular morphology, Fink et al. were

able to elucidate additional factors that play a significant role in the determination of

calcium dynamics within neuroblastoma cells. The models have been further used to accu-

rately predict the calcium dynamics in experiments that added a second buffer, CG-1

dextran, or globally increased InsP3 concentrations in uncaging experiments (Fink et

al., 1999a).

Cells have a diversity of cellular shape and cytoplasmic architecture. Distribution

and localization of organelles and molecular species contribute to the dynamic

behaviors seen in response to external signaling cues. The degree to which these

spatial characteristics participate in the quantitative and qualitative behavior is a

question that can be addressed through the combined use of quantitative experimental

and computational methods. The flexible design of Virtual Cell enables the construc-

tion and investigation of multiple hypotheses. That a single physiologic model

can be applied to multiple geometries supports the evaluation of hypotheses

regarding the relationship between spatial properties of the cell and biochemical

reactions.

The benefits of creating such an extensive model in Virtual Cell are (1) multiple

unique initial conditions can be examined by making new applications, (2) the

role of spatial designs can be explored by applying distinct geometries, (3) the

model can be shared with collaborators via the model database, and (4) the assembled

models can be used for generating testable predictions and hypotheses about the

biology.
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Chapter 8
Advanced Computing

8.1 ADVANCED COMPUTING CONCEPTS AND RESOURCES

The preceding chapters focused on two technical and methodological areas in

computational biology. In the first chapters, we discussed the use of sequence and

protein family databases to find similarities between molecular sequences—DNA,

protein, mRNA. In subsequent chapters, we discussed mathematical models of cellular

processes using simulation tools that create ordinary differential equations that are

solved numerically. We also briefly introduced spatial models. The technologies discussed

in these chapters run directly on your desktop or laptop using a single processor (Stella,

Gepasi) or are accessed remotely via a Web site (NCBI, PFAM, Virtual Cell).

In this chapter, we extend these conversations in the following ways. We highlight

strategies for database and workflow management for bioinformatic-related research

that take advantage of distributed computing resources. We expand our discussion of

spatially realistic models to the introduction of MCell, which has combined modeling

high-resolution graphics with stochastic mathematical models. We introduce software

languages designed to make numerical models accessible across simulation platforms

and software frameworks that enable large and multiscale simulations. We discuss com-

munity efforts to make models broadly accessible for use in simulation tools through

the development of Extensible Markup Languages (XMLs). Simulation frameworks are

discussed for their ability to integrate models across scales (time and size) and type (con-

tinuous and discrete), as well as increase computational functionality for analysis and

visualization.
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8.2 STANDARDS FOR MODEL DATA EXCHANGE

The models we created in Chapters 4–6 made use of three tools, two tailored for bio-

chemical and biological models, the other a general simulator. Multiple tools have been

developed for creating kinetic models of biochemical networks. Twelve kinetic simulators

were recently reviewed by Alves et al. (2006). These are only a fraction of the total

number of simulators available for kinetic modeling of biochemical networks. The tools

were developed independently of one another and have different strengths. Generally,

they are all model biochemical reactions. More specifically, some perform metabolic

control analysis, stochastic simulations, optimization algorithms, or parameter fitting

(Alves et al., 2006).

Researchers develop models in their favorite simulator. This choice may reflect any

number of preferences:

Available approximation methods (e.g., Euler, Runge-Kutta, LSODE)

User interface design (e.g., workflow, icon-based, command line)

Required computing platform (PC, Mac, Linux, Web-based)

Ability to write or modify ODEs directly (Virtual Cell, MathModel)

To share models developed in one simulator with a researcher or educator who uses a

different simulation tool is not trivial. It requires a method for transferring data—variables,

rate equations, and parameters—from one program to another without losing, misplacing,

or changing data.

XMLs provide a method for describing, defining, and handling data (Bray et al., 2000).

They create a set of standard data types that enable users to take a single data model and

run it across multiple platforms. This is true in Web pages, mathematics, and now increas-

ingly in biochemical simulators. The ability to export data in a format that can be readily

used by another program allows researchers to take advantage of the functionality of

multiple simulators.

Systems Biology Markup Language (SBML) and CellML are two XML standards

designed to add interoperability to tools used for modeling cellular events (Cuellar

et al., 2003; Hucka et al., 2003). They transport models from one tool to another. For

example, a researcher might develop a model of a signaling pathway using the biochemi-

cal simulator Gepasi (Fig. 8.1). The researcher prefers Gepasi’s user interface and wants

to use the parameter estimation tools in Gepasi to determine the robustness of the model.

However, the researcher also has images of the cell shape in which the reactions occur and

wishes to determine the affect of the cellular geometry on the results of the simulation.

Virtual Cell is this researcher’s choice for doing the spatial simulation. Rather than

rewriting the model in each tool, the model can be exported from Gepasi in SBML

format and subsequently imported to Virtual Cell where the researcher can use the geome-

try and spatial modeling tools for further investigation. The researcher transitions from a

nonspatial to spatial environment without the model having to be completely rewritten,

and the researcher is able to take advantage of the functionalities in both software

environments.

SBML has focused on the minimum yet essential characteristics of models and model-

ing tools required to pass a model from one tool to another (Hucka et al., 2003). It

assumes that the sufficient components for modeling are identification of compounds
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(species); defining species (as reactants or products within a reaction); and assigning a

theoretical space within which the reaction occurs (compartment).

CellML involves a larger set of metaconcepts for describing models (Cuellar et al.,

2003). In addition to Species, Reactions, and Compartments, CellML uses MathML

within Reactions to describe the equation used for the kinetics. (This was in contrast to

the use of text strings by SBML.) CellML also includes metadata tags to identify the

Figure 8.1 Illustration of glycolysis model exchange. The glycolysis model developed in the simulator

Gepasi (a) was exported to an SBML document (b). The compartmental model was then imported to

Virtual Cell (c). Export and import commands are found in the File menus of the GUIs for Gepasi and

Virtual Cell.
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pathway, functional role, and biological type (organ, fertilization, cell division, etc.). The

metadata is a precursor for creating larger models of biological systems based on organiz-

ing biological functions into a hierarchical structure.

The scopes of the two XMLs are different. This leads to different yet overlapping

definitions and relationships. The implementation of MathML for writing equations in

SBML (Shapiro et al., 2004) and the stabilization of CellML and SBML has led to the

development of a conversion method that supports converting CellML models into

SBML models (Schilstra et al., 2006). This is consistent with the premise of XML

efforts: exchangeable data.

Publicly available models in SBML can be imported into tools used in labs or

classrooms as long as they can import the SBML format. CellML has a repository

of models available at the CellML site along with tools capable of running the simulation

(Jsim and mozCellML) (Miller et al., 2000, 2001). Tools, like Virtual Cell, that maintain

their own repository and export SBML or CellML create another resource for exploring

and evaluating existing models. A list of model repositories can be found at

systems-biology.org, a Web site sponsored by the Systems Biology Institute and

Kitano Symbiotic Systems Project (http://www.systems-biology.org). Models are

also now available via the European Bioinformatics Institute (EBI) Web site (http://
www.ebi.ac.uk/biomodels; Le Nouvere et al., 2006).

8.3 STRATEGIES FOR BIOINFORMATICS DATABASE AND
RESOURCE/RESEARCH MANAGEMENT

Characterizing molecular properties of a newly isolated DNA sequence or full genomes

requires running multiple independent algorithms often against several databases to

detect and validate homology, structure, and function. Such a characterization might

involve the following workflow: BLASTn/BLASTx to obtain putative protein

sequence ! CLUSTAL-W or HMMalign for a multiple alignment ! PHYLIP for

phylogenetic relationships ! HMMer for detection of conserved domains ! identification

of known structure from PDB (Fig. 8.2). With the multitude of bioinformatics tools

and databases, methods to manage databases and research resources are needed. A couple

of strategies have been implemented. One involves the development of aggregated

resources. Another involves the development of workflows that direct data from one tool

to another.

Workflow management systems are a strategy that has been implemented for

managing molecular research protocols that involve the use of multiple bioinformatics

resources. The focus of workflow management systems is to automate the work process

(Hollingsworth, 1998). Automation ensures that routines are performed in the same

order with the same parameters from one experiment to another. This increases accurate

comparison of results.

An example workflow could be that after isolating a new cDNA clone, you wish to

BLAST against a nucleic acid database to obtain a set of homologous cDNAs. The

retrieved cDNAs are then used in a multiple sequence alignment to determine what

sequence segments are conserved between the cDNAs. The workflow management

systems are designed to operationalize these steps by defining input and output, specifying

which tools and parameter settings are to be used, and sending the output from one process

to the next appropriate location (database, procedure, etc.). Workflow management
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systems for bioinformatics include methods for storing results in databases such that the

data can be retrieved as input for additional analysis or queries; documenting parameters

of methods (i.e., e-values, word size, gap penalties) and sequence of procedures (i.e.,

BLASTn followed by MSA). The same procedure can now be performed over and over

again by the automated workflow.

8.3.1 Aggregating Resources and Data

The possibly more familiar approach is the aggregation of data from existing bioinfor-

matics resources. Software programs and Web sites have been developed that bring

together search algorithms and database. Suites of algorithms have been compiled into

a set of tools accessible from a single site or CD, such as TM4 from The Institute for

Genomic Research (TIGR) for microarray data processing and analysis. Databases have

been integrated or federated on centralized and distributed computing platforms to

provide an apparently seamless repository of multiple data types. UniProt, InterPro,

Biology Workbench, and Entrez are just a few examples of such databases (Schuler

et al., 1996; Subramaniam, 1998; Bairoch et al., 2005; Mulder et al., 2005).

The Biology Workbench developed by Shankar Subramaniam has tools for searching,

aligning, and viewing molecular sequence and structure data. The workbench provides a

single user interface for access to databases and popular search algorithms (Fig. 8.3).

Figure 8.2 Workflows for molecular sequence analysis. Two putative workflows starting with a DNA

sequence are illustrated. Computational tools used to process sequence data are shown in circles,

the type of data processed is shown in circles. The first workflow takes the DNA sequence, performs

a BLASTx conversion to protein sequence, followed by creation of a MSA using CLUSTAL-W and sub-

sequent searches for family or domain relationships. The second workflow uses the protein sequence

from the second step to query the PDB records directly based on sequence similarity. Concept map

was created using concept mapping tool VUE.
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The site uses a series of perl scripts to run queries from the site to databases. The use of a

single interface makes it possible for students and researchers to grapple with the biologi-

cal data and search methods instead of navigation strategies and Web site design. Biology

Workbench also provides a workspace for each user where results and queries can be

stored with the research tool on the Biology Workbench server. Biology Workbench

and its offshoot Biology Student Workbench have been used in professional development

workshops for biology educators by the BioQUEST Curriculum Consortium and the

Student Biology Workbench project of the University of Illinois at Urbana Champaign.

The workshop directors and faculty participants have created multiple guides and curricu-

lar resources that can be used for introductory research exercises and undergraduate

courses.

The Bioportal developed by the Renaissance Computing Institute (RENCI) at the

University of North Carolina at Chapel Hill is similarly a tool that uses software programs

to aggregate resources. The Bioportal provides access to more than 100 computational

tools and more than 300 gigabytes (GB) of data in databases (Table 8.1). Installation of

Figure 8.3 Screenshot of Biology Workbench Session using Protein Tools. Biology Workbench

organizes computational tools into four categories: Protein Tools, Nucleic Tools, Alignment Tools and

Structure Tools. Searches and data are stored remotely within workbench sessions named by the

user. The session shown is named “Cell Biologist’s Guide.” Four SwissProt records have been imported

to the session for use with the protein tools. The integrated protein tools are visible at the bottom of the

page (e.g., the BLAST protein algorithm and subroutines are visible in the second row of buttons).
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the service on your own cluster requires a system administrator capable of configuring and

managing cluster resources. The NC Bioportal team has developed a series of guides and

downloads to assist research groups to establish their own Bioportal node capable of acces-

sing Grid resources. The Grid, now also referred to as cyberinfrastructure, is the set of geo-

graphically distributed resources including hardware, data sets and people (Fig. 8.4).

Access to computing resources is mediated by software protocols that authenticate user

access to hardware and software, queue requested operations by software applications,

and move data across computing platforms.

TABLE 8.1 Computational Tools and Databases

Available Through Bioportal

Database searching/sequence editing (32 tools)

Alignment and phylogeny (37 tools)

Pattern searching (12 tools)

DNA/RNA analysis (37 tools)

Protein analysis (23 tools)

NCBI database (95 GB)

GenBank (206 GB)

GenPept (3 GB)

PDB (6.3 GB)

PFAM (8.7 GB)

Prints (72 MB)

TransFac (36 MB)

Figure 8.4 TheGrid is a set of geographically distributed resources accessed, navigated andmanaged

over communication networks (black lines). The Grid enables people to collaborate via technologies

such as the (a) Access Grid, to access (b) remote visualization and instrumentation tools, as well as

compute and storage cycles from (c) local and (d) remote compute clusters. Grid Services provide

researchers at local labs (your own lab or institutions) permission to and scheduling for use of multiple

networks and compute resources.

8.3 STRATEGIES FOR BIOINFORMATICS DATABASE 171

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


The Bioportal itself is a distributed system that uses geographically dispersed hetero-

geneous resources. The Bioportal services use grid computing protocols to enable the

system to make use of remote TeraGrid—compute, storage, and algorithm—resources

as needed (Fig. 8.5). To make use of the Bioportal, a lab creates its own bioportal

compute cluster. Creating a local Bioportal cluster establishes a customizable dedicated

resource for the research lab. Local instances allow the system administrator to manage

accounts, computer permissions, and the compute time allowed for simulations or

searches. This can decrease wait time and cues for computer access.

The ability to access resources beyond the locally dedicated cluster becomes import-

ant as the number and size of searches increase. For example, single sequence queries

against multiple databases may take less than 5 seconds and use very little CPU time.

However, when entire new genomes have been characterized (e.g., new bacterial

strains), a genome-against-genome database query is compute-intensive and requires

Figure 8.5 The Bioportal infrastructure is illustrated. The top left image is a screenshot of a user inter-

face to the Bioportal User Workspace. The User Workspace is the interface through which users interact

with the Grid and web services that mediate interactions between machines across the internet. The

Application Framework within Bioportal uses PISE (Letondal, 2001) to make bioinformatics tools and

resources available to the user via Bioportal. The Grid Framework includes software that manages

access to remote computers, execution of applications, monitoring of processes, and movement of

data from one program or computer to another. Security and Account Management is managed via

MyProxy which stores data about users including permissions for access to resources. An example

workflow generated by Taverna is shown to the far right (Oinn et al., 2004). The workflow indicates

the transfer of data from one program to another within the Bioportal. Schematic provided by North

Carolina/TeraGrid Bioportal, Renaissance Computing Institute.
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additional CPU and memory resources. When researchers hit the limits of their compute

resources, they must redesign their search strategy, forego the analysis, or modify their

resources. Grid-enabled resources like Bioportal eliminate the need to make such choices

by integrating high-performance protocols that allow access to resources as the need arises.

8.4 SIMULATION FRAMEWORKS FOR LARGE AND
MULTISCALE MODELS

Tools capable of simulating multiscale models in real time use high-performance comput-

ing (HPC), collaborative tools, and methods from multiple fields (e.g., biology, computer

science, applied mathematics). Advanced computing resources are needed in order to

model at multiple resolutions, synchronize results, and visualize data across scales and

within spatially realistic models. The interfaces for these tools (command line prompts,

scripts or dataflow structures) are typically less intuitive to users who are not already fam-

iliar with programming and mathematical modeling. Developers are beginning to tailor

interfaces to these advanced computing and visualization resources to domain areas

based on the needs of the scientific user. The capabilities available to researchers via

these tools are awesome and worth knowing about.

One scientific computing and visualization framework known as Problem-solving

environment (PSE) that has been used with large biological models is DAFFIE

(DAFFIE, 2006). Problem-solving environments are designed to bring together tools for

3D graphics, parallel computing, and numerical analysis to aid in the development of mod-

eling environments and analysis of simulations. Problem-solving environments provide

tools for transforming data values to optical properties, generating grids and meshes of

spatial models, and optimizing algorithms. DAFFIE (Distributed Applications Framework

for Immersive Environments) is the behind the scenes architecture for EarLab, a virtual

laboratory developed for the integration of numerical models of auditory systems.

EarLab, a virtual environment for auditory research, is a framework for integration of

multiple models within and across levels of abstraction. EarLab consists of modules that

are used to perform virtual experiments. A virtual experiment is created by selecting

modules for stimuli (sound files), one or more mathematical models of the biological struc-

ture (hair cells, basal membrane), analysis, and visualization (Fig. 8.6).

Conceptually, for biological models to talk to one another, an explicit relationship

must exist between them. The models in EarLab are integrated hierarchically based on

physiology and anatomy. The type of mathematical models can differ in their method

and type of biological phenomenon. For example, the spiral structure of the cochlea con-

tains along its length a basilar membrane (Fig. 8.7). Attached to the basilar membrane

are inner hair cells that are innervated with 10–20 auditory nerves. The basilar mem-

brane acts as a mechanical filter for sound. As sound hits the membrane, it is displaced

at some frequency, which results in changes in the membrane potentials of the inner hair

cells and subsequent action potentials in the auditory nerves. Each biological structure

has a module in EarLab. The modules are their own mathematical models of each

function.

Module parameter values are kept separate from the mathematical model. If the com-

ponents of the ear are the same across mammalian species and what differs is the set of

parameter values for those components, the models become species specific by entering

the appropriate parameters at run time. By keeping parameters separate, the model can
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be reconfigured for different mammalian species without having to rewrite the entire

model. This achieves functionality analogous to the use of Applications in Virtual Cell

(Chapter 7) where multiple parameter settings saved as independent initial conditions

are applied to a single physiologic model of components and rate equations.

The EarLab architecture, DAFFIE, solves the set of modules in discrete time inter-

vals. Each module computes for one time interval and then data is exchanged; results

are sent from one module as outputs and received as new input for another. The data

exchange at the end of each step synchronizes all modules in simulation time. The

concept of frame synchronization is most easily illustrated with a sample sound input

file (Fig. 8.8). For example, sound is a long wave form. The time it takes to say the

word Boston is �0.3 second. However, the time frames for module computations

are 10 milliseconds. To synchronize the input with the time interval of other modules,

the input signal is broken into smaller frames.

Figure 8.6 EarLab modules for online simulation. The mathematical models in EarLab include detailed

anatomic descriptions of cochlear tissues, explicit descriptions of the electrical properties of the tissues,

and explicit modeling of the excitation of the nerve membrane of individual fibers (Girzon, 1987; Whiten,

2003). The default model within the online modeling suite is the AUDITORYNERVE. The model diagram

highlights the modular components of a virtual experiment. The modules used in the default AUDITORY

MODEL are listed in the Model Module List.

174 ADVANCED COMPUTING

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


EarLab can be run as a desktop application or within DAFFIE. The DAFFIE architec-

ture supports successful communication between modules and across computing plat-

forms. The distributed implementation hosted at Boston University has a Web-based

interface that allows one to configure and run models online via a Web browser

(http://earlab.bu.edu/). Additional modules can be written to run in EarLab using the

programming language of C or using MATLAB.

8.5 SPATIAL AND PROBABILISTIC MODELS

The modeling chapters in this book were written to progress from familiar simple models

to more detailed models each using different biochemical simulators. We began with sets

of ordinary differential equations that describe biochemical reactions occuring in a homo-

genous, uniform space and do not model spatial features. We next compared results

between nonspatial and spatial models of biochemical reactions. The inclusion of

spatial models and parameters in cellular models, although facilitated in tools such as

Virtual Cell, is a nontrivial objective.

Figure 8.7 (a) Illustration of Cochlea anatomic structure. (b) Simplified illustration of hearing developed

by Greenwood (1961) that relates the characteristic frequency (CF) of any location along the length of

the basilar membrane to the distance (x) of that location from the apex. CF ¼ A(10ax/L2 K): A is a con-

stant that controls the high-frequency limit of the map (Hz); a is a constant that controls slope of the map;

L is cochlear length in millimeters; K is a constant that controls low-frequency behavior.
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Figure 8.8 Example of time frame segmentation and synchronization. Waveforms are used as sound

stimuli for EarLabmodels. The data source file obtained for the word Boston is shown in the upper panel.

The wave form occurs over 0.4 second. The EarLab system breaks the waveform into temporal frames

(bottom panel). The ability to break module inputs and outputs into temporal frames facilitates distributed

simulations and simulations at multiple time scales. One module may compute with a time frame of

0.01 second while the other occurs at 0.1 second. Results of both modules are synchronized and inte-

grated at even multiples (i.e., at 0.1 second, the results are synchronized with 10 simulations from the

module computed at 0.01 second).
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The spatial model is often created mathematically as a mesh made up of nodes and

lines that define both the finite geometry and properties of the space. These are finite

element models (FEMs) or finite difference models (FDMs). The combination of time

and space are described with partial differential equations. Each mesh cell has associated

equations for the reactions that are approximated to obtain a numerical solution. As the

resolution of the mesh increases, the size of the cells is smaller, and the total number of

cells increases, the number of computations increases. Virtual Cell uses FEM for simulat-

ing spatial models. The physiologic model description is mapped on to the geometry,

which results in the transformation of the set of ODEs to a set of partial differential

equations.

Solving biochemical reactions within spatial models creates additional issues that do

not exist within reaction systems. The computations are performed at the nodes of each

mesh cell. Also, the assumption of homogeneity within each mesh cell is invalidated at

the boundaries of finite geometries. Thus, a different set of conditions exists for reactions

at the edges that must be taken into account when solving the model equations. This is

done by solving equations at the nodes of the mesh or including a set of equations that

describe the behavior of the variables at the edges of the mesh cell. Thus, the simultaneous

strengths and weaknesses of FEMs and FDMs are (1) species can move from one mesh cell

to another, creating another equation to be solved; (2) species concentrations are resolved

at the resolution of the mesh and are commonly assumed to be homogenous within each

grid, leaving aspects of heterogeneity restricted to the resolution of the grid; (3) the

equations associated with each grid unit are solved independently, increasing resolution

to the level of each unit and the computational effort; (4) FEMs and FDMs are easily

rendered as 2D and 3D visualizations by transforming mesh coordinates to graphic coor-

dinates. Thus, the simulation and visualization of realistic spatial models become rapidly

computationally expensive.

8.6 PROBABILITY APPROACHES TO MICROPHYSIOLOGY
AND NETWORK INFERENCE

MCell (Monte Carlo cell) is simulation software originally developed by Bartol and Stiles

and has been used most prominently in the description of diffusion and reaction dynamics

at synapses (Bartol et al., 1991; Anglister et al., 1994; Stiles et al., 1996, 1998, 2001, 2004;

Stiles and Bartol, 2001; Coggan et al., 2005). Unlike the other tools we have examined,

MCell uses probabilistic methods, Monte Carlo algorithms, to model biochemical reac-

tions in realistic biological structures. Bartol and Stiles have merged the probabilistic

models with realistic spatial modeling of the biological morphology. Because of these

specialized capabilities, MCell utilizes its own model description language (MDL).

Files written in the MDL are used to create models and run simulations.

MCell can take more than one type of input to generate the spatial model: CAD and

image volumes (Fig. 8.9). The image volume approach typically begins with a series of

microscope images, serial sections through a volume of tissue, that must be analyzed

and converted into a set of triangulated surfaces—meshes—that represent the cellular

architecture in the model. This process is termed image segmentation and mesh

generation. For detailed synaptic anatomy, the images are obtained from electron

microscopy, and structures such as pre- and postsynaptic membranes are traced mostly

by hand—automated image segmentation and mesh generation remains an open research
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problem. Traced contours then may be converted into computer images, which sub-

sequently can be used to generate the surface meshes. Although the final result of the

CAD approach is the same, the topology and meshes are produced “from scratch”

within the computer, based on preexisting anatomical knowledge, but not a particular

volume of image data. With either approach, the reconstructed topology is represented

in the simulation by the triangulated mesh or meshes. The polygons, triangles, define

only the topology of the structure, and not the distribution or concentration of molecular

species.

Figure 8.9 Schematic illustration of the CAD approach (a, b, c) and the image volume approach (a, d,

e, f) for building MCell models of the neuromuscular synapse. (g) Reaction mechanisms used for inter-

actions of diffusing acetylcholine (ACh) molecules with acetylcholine receptors (left) and acetylcholin-

esterase enzyme sites (right) (from Stiles et al., 2004).
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MCell’s computational methods differ from those we have discussed previously

because the triangulated surfaces are not used as part of a finite element or finite difference

simulation that ordinarily would compute species concentrations at different nodes on the

mesh. Instead, in MCell molecules are represented individually in free space, molecules in

solution, or on the surfaces themselves, transmembrane or intramembrane molecules. The

molecules move using a random walk algorithm that approximates actual Brownian

motion (Fig. 8.10). Each molecule moves some step size, distance, based in part on its

mobility and the time step (Dt) of the simulation. Thus, trajectories of individual mol-

ecules are tracked, and reactions may occur when a molecule in solution collides with

another molecule in solution or on a surface, or two molecules collide on a surface.

What determines whether a collision leads to a reaction? As we have seen, in a

simulation based on differential equations, the rate of reaction is proportional to the con-

centrations of the two species, and the constant of proportionality is called the mass action

binding rate constant. MCell uses the same rate constant as an input parameter, but then

combines it with other inputs related to molecular sizes and the random walk to determine

the probability that any given collision results in a binding event. The actual decision is

made by comparing a computer-generated random number to the previously determined

probability value. If the random number is less than or equal to the probability, then the

binding occurs. If not, no reaction occurs and the molecules continue on to subsequent

collisions or other events. Somewhat simpler probability-based methods are also used to

decide when individual molecules undergo state changes independent of collisions; for

example, a surface molecule representing an ion channel may undergo an allosteric

state change from a closed to an open conformation.

The integration of high-resolution imaging, realistic cellular topology, and probabilistic

simulation of diffusion and reaction is exciting. The development of such models and

simulations involves data capture, segmentation, sophisticated 3D visualization, mesh

generation and editing, and assignment of many space- and time-dependent properties

related to molecule identities, locations, and mechanisms of interaction. This makes the

Figure 8.10 Left-right-left stereo image of grid-free Brownian dynamics random walk movements. The

light-blue cloud of molecules in the upper left began at a single point in free space and shows the distri-

bution of locations after a single time step of 1 microsecond. A path taken by a single molecule is shown

for 150 time steps in white and for an additional 150 time steps in magenta. The red and yellow arrows

indicate the respective net displacements. Each volume molecule in an MCell simulation moves in three

dimensions in this fashion, and molecules on surfaces move with an analogous two-dimensional random

walk (from Stiles et al., 2004).
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design of an all-encompassing GUI extremely challenging. Any such GUI also would have

to change as MCell’s algorithms, capabilities, and MDL continue to evolve. MCell’s MDL

itself is not difficult to understand, and, in light of the GUI development issues, currently

remains part of the user interface via one’s favorite text editor and basic programming

skills. On the other hand, the MCell developers have created a powerful 3D visualization

and mesh editing tool that can be used for pre- and postprocessing of models and MCell

simulation results: DReAMM (Design, Render and Animate MCell Models). DReAMM

can import and export mesh data in a variety of formats, including MCell’s MDL, and

thus already functions as a GUI for mesh manipulations that would be completely intract-

able by hand. The developers have published excellent introductions to MCell and

DReAMM (Stiles and Bartol, 2001; Stiles et al., 2001, 2004), and tutorials are posted at

the MCell Web site (http://mcell.psc.edu/). The learning curve and time investment

may be well worth the effort if your system is clearly dependent on cellular architecture

and discrete events.

Another arena in which the focus of analysis is increasingly on individual events is

network inference and profile generation in cancer diagnostics. Network inference and

profile generation make use of statistical approaches. Such methods are being used on

cancer data sets with hundreds to thousands of data points and multiple parameters in

hopes to develop a set of diagnostic tools for early detection of cancers, drug screening,

and finer distinctions in cancer prognosis for patients. The research in these areas is

often performed by multidisciplinary teams consisting of biologists, chemists, physicists,

and statisticians with at least one or more having an extensive background in compu-

tational approaches.

Flow cytometry and fluorescence activated cell sorting (FACS) are current experimen-

tal methods used to analyze thousands of cells per second, generate profiles and large data

sets from single cells (Parks and Herzenberg, 1984). Using lysates to measure average

phosphorylation or protein expression in a cell population to determine the state of signal-

ing proteins eliminates our ability to detect variation within the population. Conversely,

single cell analysis of signaling states in thousands of cells can be used to generate

average population values. With both data types (single cell and population) from

FACS, we can examine variation within the population. Irish et al. (2004) provides a

nice example case for the use of FACS to identify signaling profiles within primary

cancer cells to advance our understanding of cellular behaviors, signaling networks, and

cancer progression.

Irish et al. (2004) used five cytokine stimulants known to activate STAT and Ras/
MapK signaling pathways and examined the response of nine signaling antigens (Coffer

et al., 2000; Smithgall et al., 2000; Platanias, 2003). Cellular signaling responses in stimu-

lated versus unstimulated populations were measured as the log2 ratio of fluorescent inten-

sities that allows magnitude differences to be easily seen. An unsupervized clustering

algorithm in Multiple Experiment Viewer from TiGR (http://www.tigr.org/software/
tm4/mev.html), which had been previously used for microarray data, was used to identify

groups of cellular responses (Eisen et al., 1998; Saeed et al., 2003). Four distinct response

profiles within cell populations were identified that also correlated with patient response to

chemotherapies. For example, one subpopulation profile was characterized by the lack of

STAT1 phosphorylation and potentiated STAT5 and STAT3 signaling. This profile corre-

lated with patient resistance to a specific chemotherapy regiment.

Irish et al., from this study had a set of relationships between stimulus and signaling

states for signaling pathway antigens. They next mapped the signaling states of measured
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proteins as activated above basal or no activation onto the known signaling pathway in

which they participate. The work of Irish et al. demonstrates for us the feasibility of

using FACS in concert with stimulation of signaling pathways to characterize signaling

profiles of heterogeneous cell populations. This type of experimental analysis is the

basis for the study by Sachs et al. which used the same experimental approach, but

instead of manually mapping antigen states onto static diagrams of signaling pathways

used the measured states to predict the signaling pathway.

Sachs et al. (2005) chose to infer the signaling network from the FACS data using

Bayesian network methods. Similar to the work of Irish et al., Sachs et al. treated cells

with stimulants and measured relative amounts of kinases and phosphoproteins that par-

ticipate in signaling pathways (Fig. 8.11). Anti-CD28, anti-CD3 and Anti-ICAM2 were

used as cell surface activators which are known to trigger PI3kinase and Ras/Raf signaling
pathways. PMA and p2camp were used to activate protein kinase C (PKC), which is down-

stream of PI3kinase, and five inhibitors of events within the CD28, CD3, and ICAM2

signaling pathways were used. The phosphorylated states of 11 different protein kinases

and phosphoproteins within the pathway were measured in all perturbations. The practice

of using activators and inhibitors to identify factors in signaling pathways is a familiar

research approach. The advances seen in this study are (1) the number of events measured

per cell by the use of multiple fluorescent probes, (2) the statistical rigor due to the number

of individual cells measured (1200 to 5400), and (3) the use of Bayesian methods to predict

causal relationships.

Bayesian networks have been used to identify gene expression pathways from micro-

array data (Pe’er et al., 2001) and more recently have been applied to identification of

signaling pathways based on biochemical states of proteins (Sachs et al., 2005). Bayesian

nets are a statistical method that produces a graphical model of relationships between

multiple interacting objects (i.e., genes, proteins, factors). Experimental data is used to

create a graphical model of influences that include direct and indirect relationships

among the objects. The network is a graph consisting of nodes and lines (more accurately

referred to as edges). Notes are objects and lines are relationships between two objects.

The number of objects in a graph is defined by the number of states. For example, a

protein that is phosphorylated and dephosphorylated exists in two states. In this study,

we have 11 objects (phosphoproteins), each with two possible states: phosphorylated,

unphosphorylated. Thus, there are 211 possible signaling configurations per cell.

The state map, the combination of objects linked by a set of interactions, inferred from

the data collected by Sachs et al. contained 17 directional relationships which had been

previously reported in multiple biological model systems under multiple conditions.

Three well-reported and expected relationships were missed by the Bayesian method.

These included directional links from phosphoinositol bisphosphate (PIP2) to PKC, phos-

pholipase C-g to PKC and phosphoinositol tri-phosphate to Akt. The authors suggest that

these are missed due to the inability of Bayesian networks to identify cyclical relation-

ships. Bayesian inferences are solely acyclical. Relationships were inferred for all

objects within the data set, whether or not it was directly manipulated during an exper-

iment. For example, although reagents did not target Raf activity, Raf influence of

MEK activity was captured within the state map.

The success of Bayes nets, as for all statistical approaches, depends on the number of

data points available for the construction of the model (Sachs et al., 2005). The success of

the Bayes net approach can be evaluated by its ability to (1) identify all components of the

network, (2) not include false members, (3) draw accurate relationships, and (4) to infer
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Figure 8.11 Schematic of Bayesian network modeling with single-cell data. (a) Experimental pro-

cedure using (b) multidimensional flow cytometry data for (c) Bayesian network inference. (a) Sachs

et al., 2005 applied different perturbation conditions (Condition 1 . . . Condition n) to sets of individual

cells. (b.1) Multi-parameter flow cytometry simultaneously records levels of fluorescently labeled

phosphoproteins and phospholipids in individual cells of each perturbation data set. Relative measures

in single cells of five phosphoproteins are shown in bar graphs under the experimental conditions

(Condition 1 . . . Condition n). (b.2) Simulated scatter plots are shown for the results of relative measure-

ments for cells in each condition. Each dot in the scatter plots represents the amount of two
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directionality on the relationships. Sachs et al. were able to construct through their

approach a single map of well-reported relationships between molecules whether or

not those relationships were directly perturbed or measured in any given experiment.

This suggests that as we gather additional information on the states of signaling molecules,

we will be able to predict directional relationships between factors based on statistical evi-

dence. The capacity to diagnose and appropriately treat cancers that contain cells with

diverse signaling profiles combined with the ability to infer signaling pathways from

the same profile data holds great promise as another means of understanding cell signaling

and the biology of cancer.

8.7 OPPORTUNITIES FOR EDUCATION AND TRAINING

A significant aspect of training within computational biology for researchers is the need to

better understand the computing requirements involved. The majority of resources dis-

cussed in this book require a common PC, MAC or workstation with internet connection.

The simulations take seconds to compute rather than minutes, hours or days. Access to

larger computing resources becomes a concern when working with large image files, com-

paring thousands of sequence records, resolving fine mesh partial differential equations or

computing stochastic simulations with a large number of particles or events. As these

limits are reached by your lab, it is useful to contact existing resources at your universities

and within the country who are funded to address the computational and computer

resource needs of research communities. At your university, these are typically computing

and visualization centers associated with information technology. Within the country, NSF

and NIH have invested in both supercomputing centers and biomedical research centers

whose expertise is in the application of computing technologies to the investigation of

scientific research questions (Table 8.2). These latter resources are hosts to some of the

tools introduced in this book, including Virtual Cell (Chapter 7), MCell, EarLab, and

DAFFIE (Chapter 8).

Another challenge to learning computational methods for cell biology is knowing

what training and education opportunities exist. Professional societies and professional

development providers are two sources for learning about and participating in training

opportunities. Professional development providers for educators in biology, math and

phosphorylated proteins in an individual cell. In Condition 1, the scatter plot of simulated measurements

for phosphorylated proteins A and B shows tight correlation. Condition 2 simulates a scatter plot of

intervention data to determine directionality of influence between phosphoproteins A and B. Cells with

inhibited phosphoprotein A appear low on the x-axis. These cells can still exhibit high levels of

phosphoprotein B, seen as high on the y-axis, indicating that phosphoprotein B is likely upstream

of phosphoprotein A. Condition n can be interpreted as a visible yet loose correlation between

phosphoprotein B and C. (c) The aggregate single cell data is used to generate a Bayesian inference

network. Together the single cell and interference data is consistent with phosphoprotein B being an

upstream parent node to phosphoprotein A. The inference map indicates five proteins with B as the

parent node influencing phosphoprotein A and then C. The loose correlation in the scatter plot of

Condition n indicates is consistent with an intermediate between B and C. The linkages between

nodes are inferred from the data using Bayesian analysis. The use of inhibitors (Condition 2) creates

a condition that allows directionality to be distinguished and the link between A and B to be drawn as

an arrow from B to A (Sachs et al., 2005).
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computational science have workshops focused on computational biology in which

participants develop skills in making models, using biological database resources and

creating curricula (Table 8.3). Traditional sites of professional training for cell biologists

(i.e., Cold Spring Harbor, Marine Biological Laboratories and Friday Harbor) offer

courses that either focus on or include sections on computational methods. As well,

national resource centers for computing and biology host trainings for researchers to

learn to make use of their software applications and computing resources.

Book resources for training in computational approaches to biology are increasingly

available. A number of computational biology books focus on areas of gene sequencing

and analysis, ecology, epidemiology and environmental studies (Simon, 1972; Setubal

and Meidanis, 1997; Feurzeig and Roberts, 1999; Tass, 1999; Diekmann and Heesterbeek,

2000; Pevzner, 2000; Mount, 2001). Others are designed for the computer scientist, phy-

sicist or biomedical engineer transitioning to the area of bioinformatics (Gusfield, 1997;

Baldi and Brunak, 1998; Jagota, 2000; Baxevanis and Ouellette, 2001; Gibas and

Jambeck, 2001). Computational Cell Biology by Fall et al. (2002) address the dynamics

of cellular processes yet expects readers to have a fairly significant mathematical back-

ground. Few books discuss the biological advances achieved through computational

biology while introducing the mathematics and computing concepts used to achieve

them. This book is a first attempt at providing that introduction.

Table 8.2 Training Opportunities in Computational Biology

Organization Workshop Topics Audience

BioQUEST Curriculum Consortium

http://bioquest.org
Bioinformatics Educators, graduate students,

and researchers

Shodor Education Foundation

http://www.computationalscience.net

Computational biology Educators, graduate students,

and researchers

Cold Spring Harbor

http://www.cshl.edu
Computational cell biology Graduate students and

researchers

Computational Cell Biology

http://compcellbio.com

Computational cell biology Graduate students and

researchers

Marine Biological Laboratory

http://www.mbl.edu/courses
Physiology Course Neural

systems & behavior

Graduate students and

researchers

Friday Harbor

http://depts.washington.edu/fhl/
Computational biology Graduate students and

researchers

Table 8.3 Sample of National Resources for Biomedical Research and High Performance

Computing

Type of Resource Organization Institution Resource

Scientific Computing

Center

Scientific Computing

and Visualization

Boston University DAFFIE/EarLab http://

earlab.bu.edu

NIH National Center for

Research Resources

National Resource for

Biomedical Super-

computing Center

Pittsburgh

Supercomputing

MCell http://
www.mcell.psc.edu

NIH National Center for

Research Resources

National Resource for

Cell Analysis and

Modeling

University Connecticut

Health Center

Virtual Cell http://

www.vcell.org

NSF, Office of Cyber-

infrastructure TeraGrid

TeraGrid Science

Gateways

Renaissance Comput-

ing Institute

NC Bioportal http://

tgbioportal.org
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At the undergraduate level, the majority of biology students are not exposed to

quantitative biology, modeling and simulation. In the past few years, NSF and curricular

innovators have focused on the integration of bioinformatics related curricula within

undergraduate education. This has resulted in the creation of lesson plans, course

modules, courses, certificates, minors and majors in bioinformatics related studies

(Steen, 2005). For the most part, these materials focus on sequence alignments, identifi-

cation of similar sequence and structures to infer homology, structure and function

(Hont, 2003; Rice et al., 2004; Gibbons et al., 2004). The design of lectures, projects

and problem spaces that go from DNA to RNA to protein has been exciting and predomi-

nantly successful if not yet complete.

The success of curricular development for bioinformatics has not yet migrated to areas

of cellular, developmental biology. Similar efforts are needed that create course modules,

lesson plans and exercises that use mathematical models in curricula for cell biology. With

the active funding of interdisciplinary curriculum development by the National Science

Foundation, Department of Defense and Howard Hughes Medical Institute, we are begin-

ning to see new courses emerge. Courses in computational biology are being added as

electives to biomedical engineering, physics, mathematics, and biology departments.

In a few cases, these courses are part of an undergraduate degree or certificate program

in computational science (i.e., SUNY Brockport and Wofford College). The biological

topics and degree of math or computer science skills taught varies at each institution,

department and classroom based on faculty background and available resources. It is

also important to note that handful of faculty have integrated computational models into

existing discipline courses (i.e., neuroscience, cell biology).

Multiple views to training students in computational methods exist. One focuses the

development of students’ ability to create schematic and mathematical representations

of biological concepts and mechanisms. This can be done independent of the use of com-

puter simulation tools. A second is the introduction of specific tools designed to illustrate

specific biological concepts (Meir et al., 2005). Third, computational methods are taught

independent of discipline content, similar to traditional lessons in algebra or calculus.

Fourth, computational methods taught only in service of specific scientific questions.

The distinction between the approaches identified here is in the balance in time

and material dedicated to concepts within the scientific discipline or the computational

methods (type of mathematical model, computer architecture, program code, and

visualization methods).

Regardless of which approach educators and trainers subscribe to, most agree that com-

putational science, including computational biology, is a problem solving activity that is

best taught with problem-based methodologies. Problem-based methodologies refer

broadly to the educational pedagogies that engage the learner in the practice of modeling

and performing as a scientist (Yasar and Landau, 2003; Holmes and Qureshi, 2006).

This book introduces the central concepts to modeling biological processes with

numerical models, searching sequence and family-domain databases, and the exciting

resources available for large scale and advanced computing in the biological sciences.

It is hoped that through these introductions you have gained sufficient knowledge and

language to make use of the software applications and engage colleagues with computing

and computational backgrounds in continued collaboration that advance our understanding

of biology.
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Glossary

ADP adenosine di-phosphate; the doubly phosphorylated form of adenosine. Modified

to produce adenosine tri-phosphate during the glycolytic process.

algebraic expression an unknown variable is completely defined by the applied input,

values or calculations of the other variables.

algorithm a finite list of well-defined instructions to complete a task.

aligning comparing two sequences such that the maximal number of similar or identical

nucleic or amino acid residues are paired.

amplitude magnitude of an oscillation; measured from the mean of the oscillation to the

peak.

anaphase cellular phase when chromosomes are pulled to opposing poles of the mitotic

spindle.

ATP adenosine tri-phosphate; a nucleotide that serves as an energy source for many

cellular processes and is produced during glycolysis.

Bayes net acyclical graph of nodes and arcs that represent variables and their relation-

ships to one another based on previously observed probabilities and frequencies.

Bayesian refers to the statistical inference approach that assumes it is possible to assign

conditional values to the relationships between objects based on observed frequencies

of relationships.

bioinformatics broadly used to identify the field of information science and biology,

commonly deals with molecular biology and the development of new computing

methods to discover biological principles and relationships.
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bioportal portals are computer user interfaces and access points to compute resources.

The term bioportal generally refers to a website or program designed to access biology

related resources.

BLAST Basic Local Alignment Searching Tool: computer algorithm for searching

sequence databases based on sequence alignment.

block a stretch of amino acids that are completely or highly (.98%) conserved.

BLOSUM substitution scoring matrix developed by Henikoff and Henikoff based on the

substitution frequencies obtained from manually constructed blocks.

Boolean the use of AND, NOT, OR to construct relationships between variables.

bradykinin a nonapeptide (nine-amino acids) known to trigger inositol tri-phosphate

signaling pathways.

cdc2 cyclin dependent kinase associated with the onset of mitosis and meiosis. One of a

large family of cyclin dependent kinases.

cell cycle the processes and stages through which cells divide into two daughter cells

(somatic or reproductive).

cell growth increase in size or mass of a cell.

channel an integral membrane protein that facilitates the transport of molecules from

one location to another.

CLUSTAL-W popular progressive method for multiple sequence alignment.

cluster analysis application of an algorithm that aggregates similarly expressed genes.

compartment separate environments and structures created by internal cellular mem-

branes, i.e. organelles, e.g. endoplasmic reticulum, mitochondria, and so forth

(Cellular: 5, 7); method to create a set of equations distinct from other equations in

the simulation (Gepasi: 5); representation of a membrane enclosed area and volume

(Virtual Cell: 7).

compartmental refers to models of reactions that assume a homogenous, uniform dis-

tribution of variables.

complexity frequency and diversity of residue usage (molecular sequences); range of

scales, i.e. orders of magnitude (computational).

computational tools software applications, algorithms and routines used to represent,

simulate and analyze computational models.

computer cluster tightly coupled computers that are managed and coordinated via soft-

ware and networking such that they may appear as a single parallel processing

computer.

consensus sequence a composite representation based on the frequency of the residue

usage across a number of molecular sequences.

conservation substitution of one amino acid or nucleotide for another that retains the

physio-chemical characteristics of the sequence.

cooperative when a substrate binds to one site of a multimeric enzyme, it has a positive

or negative affect on the binding rate of subsequent substrates to other sites.

cut off score the alignment score that other scores must be above in order to be retained

and sequence alignment continued.

cyclin considered to be the driver of the cell cycle. Synthesized at a constant rate and

degraded periodically. It is one of the molecular components of MPF.
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cyclin-dependent kinase a family of kinases expressed at different times throughout the

cell cycle and activated by the binding of cyclin and subsequent phosphorylation and

dephosphorylation events.

dependent variable a variable whose behavior is dependent on other variables in the

model.

destruction box the motif within cyclin that is recognized by proteases that degrade

cyclin during mitosis/meiosis.

differential equation express the rate of change of the system as a function of the

current status of the system.

distance matrix a two-dimensional array (a table) containing the pair-wise distances

between a set of points.

divergent sequences or populations that share a common ancestry and whose variance in

residues or traits makes them less similar and further apart.

domain conserved functional units that may contain one or more motifs; structurally

independently folding units.

DREAMM Design, Render and Animate MCell Models: software used to develop visu-

alizations of MCell models.

drop-off the alignment score that sets the lower limit for significant matches in a

sequence alignment based database search.

dynamic programming a computer programming approach used to determine optimal

alignments between sequences through the use of matrices which both embody all

choices and the basis for evaluation.

enzyme a molecule, often a protein, that catalyzes the transition from one molecular

state to another.

equilibrium a balanced state when there is no net change in the system.

EST expressed sequence tag. Partial cDNA sequences obtained from large scale sequen-

cing efforts.

Euler method approximation method for the solution of differential equations.

E-value expectation value: the number of different alignments with scores equivalent to

or better than the normalized sequence alignment or family match score that are

expected to occur in a database search by chance. The lower the E-value, the more sig-

nificant the score.

exponential function a function including a variable raised to the power; a function in

which the independent variable, i.e. time, appears in the exponent.

exponential decay negative change in the concentration of a molecule that occurs as an

exponential function.

FACS fluorescent activated cell sorting: photo activated sorting process combined

with flow cytometry. The terms FACS and flow cytometry are often used interchangeably.

family grouping of evolutionarily-related genes or proteins based on similarity of

sequence, structure or function.

FASTA an alternative local alignment method for comparing two sequences developed

by Pearson and Lipman.

feedback loop the product of a reaction positively or negatively affects a process prior to

its creation and subsequently affects its own production.
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field location within a record containing a specified type of data. The data type techni-

cally is text or numbers.

filter method for hiding characteristics of nucleic or amino acid sequences that lead to

false high scores for sequence alignments in searches for sequence similarity and

identity.

fingerprint classification developed by PRINTS database to refer to the characteristic

pattern of conserved motifs and domains that identify protein families.

fixed variable variables assigned a set value for the simulation.

flow cytometry technique for sending cells via a thin fluid stream past a laser beam

causing light scatter or fluorescent emissions which are captured and measured.

flux movement of a molecule across a surface area or of mass through a system.

free calcium calcium in an unbound state and able to diffuse throughout the cytoplasm

or compartment.

frequency the number of oscillation peaks in metabolites within a unit of time; observed

amino acid usage in a specific position across a number of sequences.

functionality the action or role of a protein within the cell.

gap insertion or deletions of residues between compared sequences appear as gaps in

aligned sequences.

gap cost the score, typically negative value referred to also as a penalty, assigned to gaps

during a sequence alignment. The gap cost contributes to the overall sequence align-

ment score.

gapped alignment sequence alignments that allow for the presence of gaps.

gather score the base match score for including a sequence as a potential member of a

protein family.

Genbank a sequence database maintained by National Center for Biotechnology

Information.

Gepasi differential equation solver and biochemical simulator.

global alignment alignment method attempt to stretch the alignment over the entire

sequence length to include as many matching amino acids as possible up to and includ-

ing the sequence ends.

globin protein family of heme-containing proteins that bind and/or transport oxygen
and are highly conserved across species at the level of protein structures.

glycolysis metabolic process in which sugar is broken down from a six carbon to a three

carbon sugar and ATP and NADH are consumed and produced.

Graph theory the study of objects and their relationships as nodes (vertices) and arcs

(lines, edges).

grid volume defined by distances and nodes (simulation); set of networked and distrib-

uted computing resources (computing).

guide tree phylogenetic tree used to guide the constructionofmultiple sequence alignment.

GUI graphical user interface: a user interface that uses graphics to denote commands.

hidden Markov model a statistical model that predicts hidden parameter values based

on observed states within the system.

Hill coefficient a constant value derived empirically that defines the degree of coopera-

tivity in cooperative enzymes. A constant value of 1 or greater indicates positive coop-

erativity, less than 1 is a negative cooperativity.
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Hill type kinetics kinetic model of cooperative enzyme behavior that typically pro-

duces a sigmoidal curve when the rate is plotted against substrate concentration.

HMM see hidden Markov model.

HMM local alignment a match between target sequence and part of the scoring matrix.

homolog a sequence with common ancestry to a similar sequence in a different organism.

HSP high-scoring segment pair: short ungapped segment of aligned sequences that

subsequently achieve high scores in the given search.

identity a measure of identical nucleotides or amino acids shared between sequences; the

identity of nucleic and amino acid sequences are determined by degrees of shared identity.

independent variable a variable whose value is not dependent on the value or changes

in other variables in the system, e.g. time or space.

initial conditions the numerical values assigned to parameters to establish the initial

state of the system.

interphase cell phases, other than mitosis or meiosis, including G1, S and G2, when cells

increase in cell size and double DNA content.

KEGG Kyoto Encyclopedia of Genes and Genomes.

keyword a word used to search database fields, not typically unique to a record or field,

but one commonly associated with the object.

kinase enzyme that adds a phosphate to amino acid residues, e.g. serine, threonine, and

tyrosine.

kinetic model a description, often mathematical and symbolic, of the rates of one or

more processes, e.g. Michaelis–Menten is a kinetic model for saturating enzymes.

kinetics study of rates of change.

linear a behavior or plot that can be described by the equation y ¼ mxþ c

log-odds matrix matrix of the log scores for the ratio of the probability of an event

occurring in one group to the probability of it occurring in another group, or to a

sample-based estimate of that ratio.

lysate a solution of cellular proteins obtained when cells are broken apart (lysed). Cell

membranes are disrupted when treated with detergent or freezing and thawing.

Centrifugation of the cells causes heavier, insoluble factors to become concentrated

in a pellet and soluble factors to remain in the cytosol and added solvent. The

solvent and dissolved solutes are considered the lysate.

mass action a kinetic model that states the rate of the reaction is dependent on and pro-

portional to the amount of substrate.

Mathematica software package developed by Wolfram Research, and used for sym-

bolic mathematics and algorithm development, data visualization, data analysis, and

numeric computation.

MATLAB software package developed byMathWorks used for algorithm development,

data visualization, data analysis, and numeric computation.

matrix a two-dimensional array, commonly of rows and columns used to order data.

meiosis cell phase when reproductive cells separate chromosomes and chromatids in

two consecutive divisions in the absense of DNA synthesis to produce gametes with

a chromosomal count of 1n.

mesh multi-dimensional array of connections with regularity in topology based on the

distances and number of connections.

GLOSSARY 193

干细胞之家www.stemcell8.cn ←点击进入

http://www.stemcell8.cn


metabolic pathway series of enzyme controlled reactions that produce vital energy and

resources.

metabolite a substance used in or produced by metabolism, typically the target or

product of an enzymatic process, e.g. sugar, fats.

Michaelis-Menten type of kinetic model for enzymatic reactions that was identified by

Leonor Michaelis and Maud Menten. Michaelis–Menten is a model of saturation

kinetics in enzymes.

mitosis cellular phase in which chromosomes are segregated, spindle poles separate and

daughter cells are produced.

model simplified representation of a real world phenomena; a representation of a set of

relationships that summarize a system or illustrate and test a theory.

molecular dynamics a modeling method for describing molecular interactions between

atoms based on laws of thermodynamics and physics and using numerical methods.

Monte Carlo methods for solving mathematical models using random numbers.

motif recurring pattern of nucleotide or amino acid sequence usage that conveys a bio-

logical function.

MPF see M-phase promoting factor.

M-phase promoting factor first identified as an activity responsible for the breakdown

of nuclear envelopes and germinal vesicles and subsequently defined as the activated

molecular complex of cyclin and cdc2 kinase.

MSA see multiple sequence alignment.

multiple sequence alignment the alignment of more than two sequences. CLUSTAL-W

is a commonly used algorithm.

NAD nicotinamide adenine dinucleotide (NAD) serves as a co-enzyme for some reac-

tions and transfers electrons within the cell. It is produced and reduced in glycolysis

by the loss and gain of hydrogen.

NADH this reduced form of NAD is consumed and produced in glycolysis by the loss

and gain of hydrogen.

NAR Nucleic Acids Research journal.

NCBI National Center for Biotechnology Information.

Needleman andWunsch authors of the global alignment method that is now referred to

as the Needleman–Wunsch algorithm.

network interconnected group or system, e.g. communication network, signaling

network.

Newton integration an iterative method of numerical approximation implemented in

the Gepasi simulator.

node object (computer, molecule, intersection) within a network; the vertices of a mesh;

object connected to other objects within a graph.

nonlinear nonlinear describes the behavior of a system in which the effects and results

of the simulation are not proportional to the input.

numerical model a mathematical model that requires the inclusion of specific numbers

to solve.

ODE see ordinary differential equation.

optimal alignment best possible alignment of two or more sequences.
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optimize to search for maxima or minima as mathematical solutions.

ordinary differential equation a relationship between an independent and dependent

variable that defines the change in the dependent variable in relation to itself and

rates of change.

orthologs 60–80% identical genes that exist across species and believed to have

common ancestors.

oscillation the rise and fall of a measured amount (protein concentration, energy carrier)

that occurs with a regular period.

pairwise local alignment an alignment or method of alignment that places higher

priority to finding local regions of high similarity than to extending the alignment

to include the entire sequence.

PAM percent accepted mutation: substitution matrices developed by Margaret

O. Dayhoff based on the percentage of observed substitutions in diverged sequences.

For example, PAM 30 is a matrix of substitution frequencies based on sequences

that are evolutionarily divergent in 30% of the residues.

paralogous homologous genes within a species derived through gene duplication.

parameter a constant or quantifiable value that characterizes a property of the system.

partial differential equation a differential equation with two independent variables

such as time and space.

PDE see partial differential equation.

PERL practical extraction and reporting language: versatile programming language.

PERL scripts often small computer programs used to knit together different database

tools or data.

Pfam protein family database.

phase a point or state within the cyclic behavior of a system that is distinguished from

other states of the system either by time or behavior.

phase plane analysis graphically determining the presence of steady and sustained

oscillations by plotting all possible solutions to a given set of systems equations.

phylogenetic tree a diagrammatic representation of the evolutionary relationships

between objects, i.e. molecular sequences, organisms, species, and so forth.

Prosite protein sequence and family database.

PRINTS protein family database.

profile a formal set of distinctive characteristics that describe or classify an object.

A position specific matrix for scoring the similarity of a sequence to a motif.

proportional describes the relationship between input and output, where the relation-

ship can be characterized as a function of a constant.

protease an enzyme that breaks down proteins by cleaving molecular bonds.

protein cluster aggregation of proteins either physically as resolved by experimental

methods.

PSSM position specific scoring matrix: a matrix containing value assignments for each

possible amino acid at a given residue position within a sequence.

pump a protein that moves a molecule from one compartment to another across a

membrane or against a gradient.

quantitative involves the measurement of quantity or amount of biological factors.
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rate constant a paramater that is characteristic of the process and defines the rate at

which the process occurs, i.e. substrate converted to product.

rate equation an equation used to define the rate of a process. The rate equations in this

book are algebraic expressions.

rate law a symbolic representation of a kinetic relationship. Rate equations for enzyme

kinetics are often referred to as rate laws.

record a record is made up of fields and contains information for a specific data type.

repository collection of objects used for storage and retrieval often involves the use of a

database.

resolution ability to detect and distinguish details.

reversible reaction can occur in both directions because of the ability of one enzyme to

perform two reactions, i.e. phosphorylation and dephosphorylation, or two enzymes

mediate cellular processes that return the system to a former state.

Runge-Kutta family of iterative numerical approximation methods for ordinary differ-

ential equations.

saturation the property of a system to no longer change as a function or in relation to the

amount of input.

SBML systems biology markup language: an extensible markup language created to

support exchange of data between simulators for quantitative cell biology.

scaling the multiplication or division of a value by a factor such that proportionalities are

retained although exact numbers change.

sensitivity a measure of the ability to detect all members of the protein family.

signature characteristic and identifying sequence pattern of a protein family.

similarity a measure of the number of matching and related residues within a sequence

alignment.

simulated time the unit of time simulated in the model is not tied to the passing of real

time. An hour of simulated time, e.g. a cell division, may take 10 seconds or 2 weeks to

compute depending on the time step and complexity of the model.

simulator a software program or language used to re-create the behavior of real-world

systems including computational models of biochemical and cellular processes; they

are not restricted to numerical models.

sink a variable that collects mass or energy of the system; may be set to a fixed value or

monitored over time.

slope the inclination to the horizontal (x-axis) that a line makes or is found at a given

point along a curve.

SMART Simple Modular Architecture Research Tool: protein family database tailored

to identify proteins with multiple domains.

specificity a measure of the ability to distinguish one type of object (protein, family

member) from another.

state variables often synonymous to system variable or dependent variable, the rep-

resentation of unique states of an entity within a model, e.g. enzyme configurations.

steady state the current behavior of the system will persist into the future, it does not

require a state of balance that is associated with equilibria.
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STELLA a simulation software tool produced by iSee Systems, Inc. used for concept

mapping, dynamic thinking, sensitivity analysis and numerical modeling.

stiff models are considered stiff when parameters are different orders of magnitude

which make it computationally difficult to solve the set of numerical equations that

describe the system.

stochastic a process that involves an element of chance or probability.

substitution matrix a table of values assigned for the substitution of one residue for

another.

substrate the object that is consumed or transformed by a biological reaction, written on

the left hand side of the reaction equation.

Swiss-Prot protein database hosted by Swiss Institute of Bioinformatics and European

Bioinformatics Institute.

Systems Biology an emerging field of study in which scientists study biological systems

with information science and quantitative methods.

TeraGrid National Science Foundation funded project to support scientific research

with computational infrastructure.

threshold the point at which a behavior changes, e.g. concentration of cyclin at which

MPF is activated.

ubiquitin a highly expressed protein used to mark proteins for degradation by

proteasomes.

unique identifier a number or code specifically and uniquely used to identify individual

records in a database.

user interface the design and method implemented for people to interact with a software

program.

vertex the location at which axes, lines or dimensions intersect; a node in a graph.

Virtual Cell a web accessible simulation tool that is accessed via a java client and runs

remotely over a computer server.

visualization method of viewing data or results of simulation which includes graphs,

tables, color scales and images.

weighting the process of increasing or decreasing the value of a factor within a set of

data, particularly as it contributes to an evaluation score or result.

wobble the biological trait of protein translation in which the third nucleotide of a codon

has comparable binding with multiple anti-codons of tRNA thus resulting in more than

one amino acid being used for the same nucleotide sequence.

word size the number of amino or nucleic acid residues in a short stretch of sequence

used to find initial alignments during a sequence database search.

workflow a series of steps or procedures followed routinely to accomplish a task or

experiment, similar to a series of protocols.

Xenopus laevis an African frog commonly used as an experimental model system.

XML extensible markup language: a descriptive computer language used to describe,

define and handle data.
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Index

Accession number, 14, 15

NCBI use of, 14

Protein Information Resource, 14

record naming conventions, 14

Advanced computing, 165–185

bioinformatics database

management, 168–173

concepts and resources, 165

model data exchange standards, 166–168

resource/research management, 168–173

simulation framework modeling

EarLab, 173

multiscale, 173–175

probabilistic, 175–183

spatial, 175–177

Alignment algorithms, 16–18

global, 16–18

local, 17–18

Alignment blocks, 42

Alignment scores, 47

e-values, 48

Application Pallet, 143–148

initial conditions, 146

reaction mapping, 145

simulations, 148–149

spatial modeling, 146–148

structure mapping, 144–145

Approximation methods, 68–71

blowing up, 68–70

errors, 68–71

Euler, 68–70

rounding off, 68–71

Basic local alignment search tool. See BLAST.

Binding buffers, 132

Bioinformatics, 2

database management, 168–173

Biological databases, 21–31

displaying results, 29–31

NCBI, BLAST, 24–29

Nucleic Acids Research, 21

primary nucleotide sequence data, 22

secondary data, 22

BioModel, 136, 137

cellular compartments, 138

Bioportal, 169–173

BLAST (basic local alignment search tool),

20, 24–29

adjustable parameters, 26

displaying results, 29–31

list of alignments, 31

NCBI search statistics, 31

filters, 29

gap costs, 28–29

minimum requirements, 24–26

nr database, 25

subroutines, 24

word size, 26

Block substitution matrices

(BLOSUM), 28
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BLOSUM. See block substitution matrices.

Blowing up, 68–70

Calcium behavior, mechanisms of, 123–125

cytosolic calcium buffers, 124–125

extrusion and sequestering, 123–124

InsP3 channel, 124–125

spatial distributions, 125–126

Calcium, biology of, 121–122

Calcium dynamics, 125–163

biochemical reactions, 59–61

case study, 126, 136

InsP3 and receptor activation, 130–131

neuroblastoma calcium, 127–129

system statements, 129

kinetics, 131–133

model equations and parameters, 159–160

modeling, Virtual Cell simulation tool,

136–160

spatial simulations, 161

Calcium kinetics, 132–135

binding buffers, 132

extrusion at PM, 132

fluxes, 132

geometry and diffusion inclusion, 134

influx of, 132

InsP3, 132–133

reaction kinetics, 133

SERCA, 132

mediated, 124–125

Calcium, Virtual Cell simulation results and,

150–153

Catalyzing glycolysis reactions, 82

Cell cycle, 103–119

behavior, 107–108

characteristics of, 104–108

protein patterns, 104–107

model case study, 109–113

cyclohexamide treatment, 116

differential equations, 110–111

Michaelis-Menten rate equations, 111–112

nondegradable cyclin, 116

simulation results, 114–116

model types, 108–109

Cell signaling, 5

Cellular compartments, BioModel and, 138

Chemical reaction kinetics, 82–87

rate equations, 85

symbolic, 84

system differential equations, 85

Compartmental model, 149–150

simulation results, 150

Compartments, Gepasi model difinition

and, 95–96

Computational biology

bioinformatics, 2

cell, 3

definition of, 2

education and training, 183–185

homology inference, 9–10

modeling, 4–6

quantitative biology, 2

resources for, 6

simulation, 4–6

systems biology, 3

Computational modeling simulation, 67–71

approximation methods, 68–71

ordinary differential equation essentials, 68

time steps, 68

Conceptual modeling, 4

Consensus sequence, 42

Cyclin, 116

Cyclohexamide treatment, 116

Cytosolic calcium buffers, 124

Data viewing tool virtual cell, 154

Database searching methods, 15–21

dynamic programming, 15

Databases

family-domain, 35–54

sequence alignments and, 9–34

Differential equations, 110–111

Diffusion inclusion, calcium kinetics and, 134

Domain record, 48–51

Domain

biological definition of, 35–38

multiple sequence alignment and, 42–46

Dynamic programming, 15

EarLab, 174

Errors, approximation, 68–71

Expect value (e-value), 29, 48

Expression pattern, 42

Families, multiple sequence alignment and, 42–46

Family, biological definition of, 35–38

Family, definition of, 35–38

Family-domain assignments, 49–51

Family-domain databases, 35–54

benefits of, 38

creating representations, 40–53

initial sequences, 40–41

matching, 47–48

multiple sequence alignment, 41–42

record types, 48–50

representations, 42–47

motifs, 36

searching, 50–53

types, 38–40

focus of, 40

Filters, 29

Fixed variable model: Six variable, 98

Fluxes, 132

species and, 142–143
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Gap costs, 28–29

Gene identifier, 15

Geometry inclusion, virtual cell and, 134

Gepasi

files, 94

simulator, 87

GFP. See Green Fluorescent Protein.

Global alignments, 16–20

Glossary, 189–197

Glycolysis model, 76–100

definition of, 88–94

compartments, 91

kinetics, 90–91

metabolites, 91–92

moieties, 92–93

reactions, 88–90

Gepasi, 87–88

initial concentrations, 86

results, 94–98

fixed variables, 98

valid nine-variable model, 94–98

simulation controls, 93–94

simulation results, virtual all tool and, 150

yeast, 76–87

Glycolysis reactions, 82

Green Fluorescent Protein (GFP), 10

Hidden Markov model, 42

High-scoring segment pairs (HSPs), 21

Homology inference, 9–10

sequence databases, 9–10

HSPs. See high-scoring segment pairs.

Human Genome Project, 1

Individual sequence records, keywords, 13–15

Initial conditions, 66–67, 146

Initial sequences, 40–41

InsP3 channel, 124–125

mediated calcium release, 124–125

InsP3 kinetics, 132–133

InsP3 reaction kinetics, 133–135

InsP3 receptor activation, 130–131

InterPro, 52–53

KEGG (Kyoto Encyclopedia of Genes and Genomes),

78–82

enzyme catalyzing glycolysis reactions, 80

pathway, 80

Keyword searches, 13–15

results, 15

results, record summaries, 14

Kinetics, 62–65, 82–85, 106–108, 124–127

glycolysis modeling and, 92–93, 112, 117–118

Kyoto of Encyclopedia of Genes and Genomes.

See KEGG.

Local alignments, 17–18, 20–21

BLAST, 20

Markov model, hidden, 42

Mass action rate equations, 63

Matching, 46–48

cut off, 47

scores, 47

Mathematical description, 4

MCell, 177–180

Metabolic modeling, 75–100

noncomputational glycolysis model, 76–99

Metabolites, 91

Michaelis-Menten rate equations, 111–112

Microphysiology, 177–183

Model data exchange standards, advanced computing

and, 166–168

Model equations, calcium dynamics and, 159–160

Modeling, 4–6, 57–74

analyzing results, 71–74

calcium cell cycle and, 108–109

cell signaling, 5

computational, 67–71

conceptual, 4

mathematical description, 4

metabolism, 75–100

network, 5

databases, 5

noncomputational, 59–67

ordinary differential equations, 58

pathways, 5

spatial, 74

steady-state analysis, 72–74

visualizing results, 72–74

working hypotheses, 4

Moieties, 92

Molecular sequence types, NCBI and, 23

Motifs, 36

MSA. See multiple sequence alignment.

Muliple sequence alignment (MSA), 41–46

domains, 42–46

alignment blocks, 42

consensus sequence, 42

expression pattern, 42

families, 42–46

hidden Markov model, 42

position-specific scoring matrix, 42

profile model, 42

Multiscale modeling, 173–175

Naming conventions, records and, 14

National Computational Biology

Institute. See NCBI.

NCBI, (National Computational Biology Institute), 9

accession number, 14

BLAST, 24–29

adjustable parameters, 26

displaying results, 29–31

expect value, 29

filters, 29
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NCBI (Continued)

gap costs, 28–29

minimum requirements, 24–26

molecular sequence types, 23

scoring process, 27–28

subroutines, 24

word size, 26–27

search statistics, 31

visualization tool, 29–31

Network, 5

databases, 5

inference, 177–183

Neuroblastoma calcium, 127–135

initial conditions, 135

Nine variable model, 94–98

nine-variable model, 94

Noncomputational modeling, 59–67

biochemical reactions, 59–61

glycolysis, 76–87

initial conditions, 65–67

kinetics, 62–65

parameter values, 65

rate equations, 62–65

reaction maps, 59–61

Nondegradable cyclin, 116

Nonredundant database. See nr.

Nonuniform spatial simulation, 155–157

Nr database (nonredundant), 25

Nucleic Acids Research, 21

Nucleotide sequence data, 22

ODE. See ordinary differential equations.

Ordinary differential equations (ODE), 58

essentials of, 67

simplifying of, 71

Oscillations, yeast, 76–78

PAM, 26–28, 42, 44, 46

Parameter values, noncomputational

modeling and, 65

Pathways, 5

Position specific scoring matrices (PSSM), 44, 45

Primary data, 22

Primary nucleotide sequence data, 22

Probabilistic modeling, 175–177

MCell, 177–180

microphysiology, 177–183

network inference, 177–183

Profile model, 42

Protein Information Resource (PIR), accession

number and, 14

Protein

patterns, 104–107

sequence, 47

PSSM. See position specific scoring matrices.

Quantitative biology, 2

Query sequences, 11–15

individual records, keywords, 13–15, 148, 150,

179, 181

types, 11–13

Rate equations, 62–65

change in rate over time, 86

Reaction mapping, 59–61, 145

Reactions

glycolysis modeling and, 88–90

species and, 140–141

Record naming conventions, 15

Record summaries, 15

accession number, 14

definition, 15

gene identifier, 15

title, 15

Record types, 48–51

domain, 48–51

protein sequence, 47

sequence definition, 15

Resource/research management, 168–173

Bioportal, 170–172

Returning local alignments, 21

high-scoring segment pairs, 21

Run and view results, 149–157

calcium, 150–153

compartmental model, 149–153

data viewing tool, 154

nonuniform spatial simulation, 155–157

simulation results, 150

simulation, 154–157

spatial models, 157

uniform model, 153–155

Scoring process, 27–28

substitution scoring matrices, 27–28

Searching sequence databases, 19–21

global alignment, 19–20

local alignments, 20–21

returning local alignments, 21

Secondary data, 22

Sequence alignment, 15–21

alignment algorithms, 16–19

multiple, 41–42

searching databases, 19–21

databases and, 9–34

Sequence databases, 9–34

common questions asked of, 10

National Computational Biology

Institute (NCBI), 9

similar sequence searches, 10–31

similar sequence searches, query, 11–15

Sequence, initial, 40–41

Sequence records, individual, 13–15

accession number, 14

Sequence searches for similarity, 10–31

query, 11–15
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Sequestering, extrusion and, 123–124

SERCA kinetics, 132

Similar sequence searches

biological databases, 21–31

database searching methods, 15–21

sequence alignment, 15–21

Simulation, 4–6

Virtual Cell tool results and, 156–157

Simulation controls

Gepasi files, 94

plot, 94

tasks, 93–94

Six-variable model, 98

Spatial distributions, calcium behavior and,

125–126

Spatial modeling, 146–148, 175–177

diffusion, 148

regions, 157

Spatial simulation

nonuniform, 155–157

rate constants, 161

uniform, 144, 146, 148–149, 155

Species

fluxes, 142–143

reactions, 140–141

Steady-state analysis, 72–74

Structure mapping, 144–145

Substitution scoring matrices, 27–28

block substitution matrices, 28

PAM, 26–28

Symbolic reactions, 84

System differential equations, 85

calcium, 126, 131, 134, 136, 154

glycolysis, 75–76, 78

ode’s for cellcycle, 110

System biology, 3

Time steps, 68, 148, 149

Uniform model, Virtual Cell simulation results and,

153–155

Virtual Cell simulation tool

Application Pallet, 143–149

BioModel, 137–143

modeling calcium dynamics, 136–161

run and view results, 149–157

calcium, 150–153

compartmental model, 149–153

data viewing tool, 154

nonuniform spatial, 155–157

simulation, 148–149

spatial models, 157

uniform model, 153–155

species, 138–139

use of, 158

Word size, BLAST search and, 26

Yeast glycolysis and oscillations, 76–87

chemical reactions, 78–82

KEGG, 78–82

kinetics, 82–85

parameters, 85–87
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